The Annals of Probability

Singularity points for first passage percolation

J. E. Yukich and Yu Zhang

Full-text: Open access

Abstract

Let 0<a<b<∞ be fixed scalars. Assign independently to each edge in the lattice ℤ2 the value a with probability p or the value b with probability 1−p. For all u,v∈ℤ2, let T(u,v) denote the first passage time between u and v. We show that there are points x∈ℝ2 such that the “time constant” in the direction of x, namely, lim n→∞n−1Ep[T(0,nx)], is not a three times differentiable function of p.

Article information

Source
Ann. Probab., Volume 34, Number 2 (2006), 577-592.

Dates
First available in Project Euclid: 9 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.aop/1147179983

Digital Object Identifier
doi:10.1214/009117905000000819

Mathematical Reviews number (MathSciNet)
MR2223952

Zentralblatt MATH identifier
1097.60084

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
First passage percolation shape theory the right-hand edge nondifferentiability of time constants

Citation

Yukich, J. E.; Zhang, Yu. Singularity points for first passage percolation. Ann. Probab. 34 (2006), no. 2, 577--592. doi:10.1214/009117905000000819. https://projecteuclid.org/euclid.aop/1147179983


Export citation

References

  • Campanino, M., Chayes, J. and Chayes, L. (1991). Gaussian fluctuations of connectivities in subcritical regime of percolation. Probab. Theory Related Fields 88 269--341.
  • Chayes, J., Chayes, L. and Durrett, R. (1986). Critical behavior of the two-dimensional first passage time. J. Statist. Phys. 45 933--948.
  • Cox, T. and Durrett, R. (1981). Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9 583--603.
  • Cox, T. and Kesten, H. (1981). On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 809--819.
  • Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999--1040.
  • Durrett, R. and Liggett, T. (1981). The shape of the limit set in Richardson's growth model. Ann. Probab. 9 186--193.
  • Engle, E. (1997). Sperner Theory. Cambridge Univ. Press.
  • Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Bernoulli, Bayes, Laplace Anniversary Volume (J. Neyman and L. LeCam, eds.) 61--110. Springer, Berlin.
  • Kesten, H. (1986). Aspects of first passage percolation. École d'été de Probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180 125--264. Springer, Berlin.
  • Kuczek, T. (1989). The central limit theorem for the right edge of supercritical oriented percolation. Ann. Probab. 17 1322--1332.
  • Kuczek, T. and Crank, K. (1991). A large deviation result for regenerative processes. J. Theoret. Probab. 4 551--560.
  • Marchand, R. (2002). Strict inequalities for the time constant in first passage percolation. Ann. Appl. Probab. 12 1001--1038.
  • Zhang, Y. (2004). On the infinite differentiability of the right edge in the supercritical oriented percolation. Stochastic Process. Appl. 114 279--286.