The Annals of Probability

Logarithmic Sobolev inequality for zero-range dynamics

Paolo Dai Pra and Gustavo Posta

Full-text: Open access


We prove that the logarithmic Sobolev constant for zero-range processes in a box of diameter L grows as L2.

Article information

Ann. Probab., Volume 33, Number 6 (2005), 2355-2401.

First available in Project Euclid: 7 December 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35]

Logarithmic Sobolev inequality zero-range processes


Dai Pra, Paolo; Posta, Gustavo. Logarithmic Sobolev inequality for zero-range dynamics. Ann. Probab. 33 (2005), no. 6, 2355--2401. doi:10.1214/009117905000000332.

Export citation


  • Cécile, A., Blachère, S., Chafaï, D., Fougéres, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G. (2000). Sur les Inégalités de Sobolev Logarithmiques. (With a preface by Dominique Bakry and Michel Ledoux.) Panor. Synthéses 10. Société Mathématique de France, Paris.
  • Cancrini, N., Martinelli, F. and Roberto, C. (2002). The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited. Ann. Inst. H. Poincaré Probab. Statist. 38 385--436.
  • Dai Pra, P., Paganoni, A. M. and Posta, G. (2002). Entropy inequalities for unbounded spin systems. Ann. Probab. 30 1959--1976.
  • Dai Pra, P. and Posta, G. (2005). Logarithmic Sobolev inequality for zero-range dynamics: Independence of the number of particles. Electron. J. Probab. 10 525--576.
  • Diaconis, P. and Saloff-Coste, L. (1996). Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 695--750.
  • Gross, L. (1993). Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet forms. Lecture Notes in Math. 1563 54--88. Springer, Berlin.
  • Landim, C. and Kipnis, C. (1999). Scaling Limits of Interacting Particle Systems. Springer, Berlin.
  • Landim, C., Sethuraman, S. and Varadhan, S. R. S. (1996). Spectral gap for zero-range dynamics. Ann. Probab. 24 1871--1902.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, Berlin.
  • Lu, S. T. and Yau, H.-T. (1993). Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156 399--433.
  • Martinelli, F. (1999). Lectures on Glauber dynamics for discrete spin models. Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1717 93--191. Springer, Berlin.
  • Martinelli, F. and Olivieri, E. (1994). Approach to equilibrium of Glauber dynamics in the one-phase region II: The general case. Comm. Math. Phys. 161 487--514.
  • Miclo, L. (1999). An example of application of discrete Hardy's inequalities, Markov process. Probab. Theory Related Fields 5 319--330.
  • Posta, G. (1997). Spectral gap for an unrestricted Kawasaki type dynamics. ESAIM Probab. Statist. 1 145--181.
  • Stroock, D. W. and Zegarlinski, B. (1992). The logarithmic Sobolev inequality for discrete spin systems on a lattice. Comm. Math. Phys. 149 175--193.
  • Yau, H. T. (1997). Logarithmic Sobolev inequality for generalized simple exclusion processes. Probab. Theory Related Fields 109 507--538.