The Annals of Probability

Stochastic processes in random graphs

Anatolii A. Puhalskii

Full-text: Open access

Abstract

We study the asymptotics of large, moderate and normal deviations for the connected components of the sparse random graph by the method of stochastic processes. We obtain the logarithmic asymptotics of large deviations of the joint distribution of the number of connected components, of the sizes of the giant components and of the numbers of the excess edges of the giant components. For the supercritical case, we obtain the asymptotics of normal deviations and the logarithmic asymptotics of large and moderate deviations of the joint distribution of the number of components, of the size of the largest component and of the number of the excess edges of the largest component. For the critical case, we obtain the logarithmic asymptotics of moderate deviations of the joint distribution of the sizes of connected components and of the numbers of the excess edges. Some related asymptotics are also established. The proofs of the large and moderate deviation asymptotics employ methods of idempotent probability theory. As a byproduct of the results, we provide some additional insight into the nature of phase transitions in sparse random graphs.

Article information

Source
Ann. Probab., Volume 33, Number 1 (2005), 337-412.

Dates
First available in Project Euclid: 11 February 2005

Permanent link to this document
https://projecteuclid.org/euclid.aop/1108141729

Digital Object Identifier
doi:10.1214/009117904000000784

Mathematical Reviews number (MathSciNet)
MR2118868

Zentralblatt MATH identifier
1096.60008

Subjects
Primary: 05C80: Random graphs [See also 60B20]
Secondary: 60C05: Combinatorial probability 60F05: Central limit and other weak theorems 60F10: Large deviations 60F17: Functional limit theorems; invariance principles

Keywords
Random graphs connected components phase transitions stochastic processes large deviations moderate deviations large deviation principle weak convergence idempotent probability

Citation

Puhalskii, Anatolii A. Stochastic processes in random graphs. Ann. Probab. 33 (2005), no. 1, 337--412. doi:10.1214/009117904000000784. https://projecteuclid.org/euclid.aop/1108141729


Export citation

References

  • Aldous, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 812--854.
  • Alekseev, V. M., Tikhomirov, V. M. and Fomin, S. V. (1987). Optimal Control. Consultants Bureau, New York.
  • Aubin, J.-P. and Ekeland, I. (1984). Applied Nonlinear Analysis. Wiley, New York.
  • Barraez, D., Boucheron, S. and Fernandez de la Vega, W. (2000). On the fluctuations of the giant component. Combin. Probab. Comput. 9 287--304.
  • Bennett, C. and Sharpley, R. (1988). Interpolation of Operators. Academic Press, London.
  • Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Univ. Press.
  • Bollobás, B., Grimmett, G. and Janson, S. (1996). The random-cluster model on the complete graph. Probab. Theory Related Fields 104 283--317.
  • Chaganty, N. R. (1997). Large deviations for joint distributions and statistical applications. Sankhyā Ser. A 59 147--166.
  • de Acosta, A. (2000). A general non-convex large deviation result with applications to stochastic equations. Probab. Theory Related Fields 118 483--521.
  • Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Springer, New York.
  • DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approximation. Springer, New York.
  • Ekeland, I. and Temam, R. (1976). Convex Analysis and Variational Problems. North-Holland, Amsterdam.
  • Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence. Wiley, New York.
  • Freidlin, M. I. and Wentzell, A. D. (1998). Random Perturbations of Dynamical Systems, 2nd ed. Springer, New York.
  • Gärtner, J. (1977). On large deviations from an invariant measure. Teor. Veroyatnost. i Primenen. 22 27--42. (In Russian.)
  • Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam.
  • Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York.
  • Janson, S., Łuczak, T. and Ruciński, A. (2000). Random Graphs. Wiley, New York.
  • Kolchin, V. F. (1999). Random Graphs. Cambridge Univ. Press.
  • Krasnosel'skiĭ, M. A. and Rutickiĭ, J. B. (1961). Convex Functions and Orlicz Spaces. Translated from the first Russian edition by Leo F. Boron. Noordhoff, Groningen.
  • Liptser, R. (1996). Large deviations for two scaled diffusions. Probab. Theory Related Fields 106 71--104.
  • Liptser, R., Spokoiny, V. and Veretennikov, A. Y. (2002). Freidlin--Wentzell type large deviations for smooth processes. Markov Process. Related Fields 8 611--636.
  • Liptser, R. S. and Shiryayev, A. N. (1989). Theory of Martingales. Kluwer, Dordrecht.
  • O'Connell, N. (1998). Some large deviation results for sparse random graphs. Probab. Theory Related Fields 110 277--285.
  • Pittel, B. (1990). On tree census and the giant component in sparse random graphs. Random Structures Algorithms 1 311--341.
  • Puhalskii, A. (1994). The method of stochastic exponentials for large deviations. Stochastic Process. Appl. 54 45--70.
  • Puhalskii, A. (1995). Large deviation analysis of the single server queue. Queueing Syst. Theory Appl. 21 5--66.
  • Puhalskii, A. (2001). Large Deviations and Idempotent Probability. Chapman and Hall, London.
  • Puhalskii, A. (2004). On some degenerate large deviation problems. Unpublished manuscript.
  • Stepanov, V. E. (1970a). On the probability of connectedness of the random graph $\mathcal G_m(t)$. Teor. Veroyatnost. i Primenen. 15 56--68. (In Russian.)
  • Stepanov, V. E. (1970b). Phase transitions in random graphs. Teor. Veroyatnost. i Primenen. 15 200--216. (In Russian.)
  • Stepanov, V. E. (1972). Structure of the random graphs $\mathcal G_m(x|h)$. Teor. Veroyatnost. i Primenen. 17 238--252. (In Russian.)
  • Whitt, W. (2002). Stochastic-Process Limits. Springer, New York.