The Annals of Probability

Relative entropy and variational properties of generalized Gibbsian measures

Christof Külske, Arnaud Le Ny, and Frank Redig

Full-text: Open access

Abstract

We study the relative entropy density for generalized Gibbs measures. We first show its existence and obtain a familiar expression in terms of entropy and relative energy for a class of “almost Gibbsian measures” (almost sure continuity of conditional probabilities). For quasilocal measures, we obtain a full variational principle. For the joint measures of the random field Ising model, we show that the weak Gibbs property holds, with an almost surely rapidly decaying translation-invariant potential. For these measures we show that the variational principle fails as soon as the measures lose the almost Gibbs property. These examples suggest that the class of weakly Gibbsian measures is too broad from the perspective of a reasonable thermodynamic formalism.

Article information

Source
Ann. Probab., Volume 32, Number 2 (2004), 1691-1726.

Dates
First available in Project Euclid: 18 May 2004

Permanent link to this document
https://projecteuclid.org/euclid.aop/1084884868

Digital Object Identifier
doi:10.1214/009117904000000342

Mathematical Reviews number (MathSciNet)
MR2060315

Zentralblatt MATH identifier
1052.60042

Subjects
Primary: 60G60: Random fields
Secondary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82B30: Statistical thermodynamics [See also 80-XX]

Keywords
Gibbs versus non-Gibbs generalized Gibbs measures variational principle renormalization group disordered systems random field Ising model Morita approach

Citation

Külske, Christof; Le Ny, Arnaud; Redig, Frank. Relative entropy and variational properties of generalized Gibbsian measures. Ann. Probab. 32 (2004), no. 2, 1691--1726. doi:10.1214/009117904000000342. https://projecteuclid.org/euclid.aop/1084884868


Export citation

References

  • Bovier, A. and Külske, C. (1994). A rigorous renormalization group method for interfaces in random media. Rev. Math. Phys. 6 413--496.
  • Bricmont, J. and Kupiainen, A. (1988). Phase transition in the $3d$ random field Ising model. Comm. Math. Phys. 142 539--572.
  • Bricmont, J., Kupiainen, A. and Lefevere, R. (1998). Renormalization group pathologies and the definition of Gibbs states. Comm. Math. Phys. 194 359--388.
  • Dobrushin, R. L. and Shlosman, S. B. (1997). Gibbsian description of ``non Gibbsian'' field. Russian Math. Surveys 52 285--297. [Also see ``Non Gibbsian'' states and their description. Comm. Math. Phys. 200 (1999) 125--179.]
  • Fernández, R., Le Ny, A. and Redig, F. (2002). Variational principle and almost quasilocality for renormalized measures. J. Statist. Phys. 111 465--477.
  • Fernández, R. and Pfister, C.-E. (1997). Global specifications and non-quasilocality of projections of Gibbs measures. Ann. Probab. 25 1284--1315.
  • Georgii, H. O. (1988). Gibbs Measures and Phase Transitions. de Gruyter, Berlin.
  • Griffiths, R. B. and Pearce, P. A. (1979). Mathematical properties of position-space renormalization-group transformations. J. Statist. Phys. 20 499--545.
  • Israel, R. B. (1986). Convexity in the Theory of Lattice Gases. Princeton Univ. Press.
  • Kozlov, O. K. (1974). Gibbs description of a system of random variables. Problems Inform. Transmission 10 258--265.
  • Kühn, R. and Mazzeo, G. (1994). Critical behavior of the randomly spin diluted 2D Ising model: A grand ensemble approach. Phys. Rev. Lett. 73 2268--2271.
  • Kühn, R. and Mazzeo, G. (2000). Reply to ``Comment on `Critical behavior of the randomly spin diluted 2D Ising model: A grand ensemble approach'.'' Phys. Rev. Lett. 84 6135.
  • Külske, C. (1999). (Non-)Gibbsianness and phase transitions in random lattice spin models. Markov Processes and Related Fields 5 357--383.
  • Külske, C. (2001). Weakly Gibbsian representation for joint measures of quenched lattice spin models. Probab. Theory Related Fields 119 1--30.
  • Lefevere, R. (1999). Almost and weak Gibbsianness: A long-range pair-interaction example. J. Statist. Phys. 96 109--113.
  • Lefevere, R. (1999). Variational principle for some renormalized measures. J. Statist. Phys. 95 785--803.
  • Maes, C., Redig, F., Shlosman, S. and Van Moffaert, A. (2000). Percolation, path large deviations and weak Gibbsianity. Comm. Math. Phys. 209 517--545.
  • Maes, C., Redig, F., Takens, F., Van Moffaert, A. and Verbistkiy, E. (2000). Intermittency and weak Gibbs states. Nonlinearity 13 1681--1698.
  • Maes, C., Redig, F. and Van Moffaert, A. (1999). Almost Gibbsian versus weakly Gibbsian. Stochastic Process. Appl. 79 1--15.
  • Maes, C., Redig, F. and Van Moffaert, A. (1999). The restriction of the Ising model to a Layer. J. Statist. Phys. 96 69--107.
  • Maes, C. and vande Velde, K. (1997). Relative energies for non-Gibbsian states. Comm. Math. Phys. 189 277--286.
  • Morita, T. (1964). Statistical mechanics of quenched solid solutions with application to magnetically dilute alloys. J. Math. Phys. 5 1402--1405.
  • Pfister, C.-E. (2002). Thermodynamical aspects of classical lattice systems. In In and Out of Equilibrium. Probability with a Physical Flavour (V. Sidoravicius, ed.) 393--472. Birkhaüser, Boston.
  • Pirlot, M. (1980). A strong variational principle for continuous spin systems. J. Appl. Probab. 17 47--58.
  • Seppäläinen, T. (1995). Entropy, limit theorems, and variational principles for disordered lattice systems. Comm. Math. Phys. 171 233--277.
  • Sullivan, W. G. (1973). Potentials for almost Markovian random fields. Comm. Math. Phys. 33 61--74.
  • van Enter, A. C. D., Fernández, R., den Hollander, F. and Redig, F. (2002). Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures. Comm. Math. Phys. 226 101--130.
  • van Enter, A. C. D., Fernández, R. and Sokal, A. D. (1993). Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Statist. Phys. 72 879--1167.
  • van Enter, A. C. D., Maes, C. and Külske, C. (2000). Comment on ``Critical behavior of the randomly spin diluted 2D Ising model: A grand ensemble approach.'' Phys. Rev. Lett. 84 6134.
  • van Enter, A. C. D., Maes, C., Schonmann, R. H. and Shlosman, S. (2000). The Griffiths singularity random field. Amer. Math. Soc. Transl. Ser. 2 198 51--58.
  • Xu, S. (1997). An ergodic process of zero divergence distance from the class of all stationary processes. J. Theoret. Probab. 11 181--196.