The Annals of Probability

A stochastic representation for mean curvature type geometric flows

H. Mete Soner and Nizar Touzi

Full-text: Open access

Abstract

A smooth solution $\{ \Gamma(t)\}_{t \in[0,T]}\subset \R^d $ of a parabolic geometric flow is characterized as the reachability set of a stochastic target problem. In this control problem the controller tries to steer the state process into a given deterministic set $\Tc$ with probability one. The reachability set, $V(t)$, for the target problem is the set of all initial data x from which the state process $\xx(t) \in \Tc$ for some control process $\nu$. This representation is proved by studying the squared distance function to $\Gamma(t)$. For the codimension k mean curvature flow, the state process is $dX(t)= \sqrt{2} P \,dW(t)$, where $W(t)$ is a d-dimensional Brownian motion, and the control P is any projection matrix onto a $(d-k)$-dimensional plane. Smooth solutions of the inverse mean curvature flow and a discussion of non smooth solutions are also given.

Article information

Source
Ann. Probab., Volume 31, Number 3 (2003), 1145-1165.

Dates
First available in Project Euclid: 12 June 2003

Permanent link to this document
https://projecteuclid.org/euclid.aop/1055425773

Digital Object Identifier
doi:10.1214/aop/1055425773

Mathematical Reviews number (MathSciNet)
MR1988466

Zentralblatt MATH identifier
1080.60076

Subjects
Primary: 49J2060J60 60J60: Diffusion processes [See also 58J65]
Secondary: 49L20: Dynamic programming method 35K55: Nonlinear parabolic equations

Keywords
Geometric flows codimension $-k$ mean curvature flow inverse mean curvature flow stochastic target problem.

Citation

Soner, H. Mete; Touzi, Nizar. A stochastic representation for mean curvature type geometric flows. Ann. Probab. 31 (2003), no. 3, 1145--1165. doi:10.1214/aop/1055425773. https://projecteuclid.org/euclid.aop/1055425773


Export citation

References

  • [1] AMBROSIO, L. and MANTEGAZZA, C. (1998). Curvature and distance function from a manifold. J. Geom. Anal. 8 723-740.
  • [2] AMBROSIO, L. and SONER, H. M. (1996). Level set approach to mean curvature flow in arbitrary codimension. J. Differential Geom. 43 693-737.
  • [3] AUBIN, J. P., DA PRATO, G., FRANKOWSKA, H. and ZABCZy K, J. (1999). Stochastic viability. Preprint.
  • [4] BARLES, G., SONER, H. M. and SOUGANIDIS, P. E. (1993). Front propagation and phase field theory. SIAM J. Control Optim. 31 439-469.
  • [5] BUCKDAHN, R., CARDALIAGUET, P. and QUIMCAMPOIX, M. (2002). A representation formula for the mean curvature motion. SIAM J. Math. Anal. 33 827-846.
  • [6] BRAKKE, K. (1978). The Motion of a Surface by Its Mean Curvature. Princeton Univ. Press.
  • [7] CHEN, Y.-G., GIGA, Y. and GOTO, S. (1991). Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 749-786.
  • [8] CRANDALL, M. G., EVANS, L. C. and LIONS, P.-L. (1984). Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 487-502.
  • [9] CVITANI ´C, J., KARATZAS, I. and SONER, H. M. (1998). Backward SDE's with constraints on the gains process. Ann. Probab. 26 1522-1551.
  • [10] DE GIORGI, E. (1994). Barriers, boundaries, motion of manifolds. Lectures held in Pavia, Italy.
  • [11] EVANS, L. C. and SPRUCK, J. (1991). Motion of level sets by mean curvature. J. Differential Geom. 33 635-681.
  • [12] FLEMING, W. H. and SONER, H. M. (1993). Controlled Markov Processes and Viscosity Solutions. Springer, New York.
  • [13] GAGE, M. and HAMILTON, R. S. (1986). The heat equation shrinking convex plane curves. J. Differential Geom. 23 69-95.
  • [14] GRAy SON, M. A. (1987). The heat equation shrinks embedded curves to round points. J. Differential Geom. 26 285-314.
  • [15] GRAy SON, M. A. (1989). A short note on the evolution of surfaces via mean curvature. Duke Math. J. 58 555-558.
  • [16] GURTIN, M. (1993). Thermody namics of Evolving Phase Boundaries in the Plane. Oxford Univ. Press.
  • [17] HUISKEN, G. (1984). Flow by mean curvature of convex surfaces into spheres. J. Differential Geom. 20 237-266.
  • [18] HUISKEN, G. and ILMANEN, T. (1997). The Riemannian Penrose inequality. Internat. Math. Res. Notices 20 1045-1058.
  • [19] KARATZAS, I. and SHREVE, S. (1998). Methods of Mathematical Finance. Springer, New York.
  • [20] KRy LOV, N. V. (1980). Controlled Diffusion Processes. Springer, New York.
  • [21] MA, J. and YONG, J. (1999). Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702. Springer, New York.
  • [22] SONER, H. M. (1993). Motion of a set by the curvature of its boundary. J. Differential Equations 101 313-372.
  • [23] SONER, H. M. and TOUZI, N. (2000). Super-replication under Gamma constraints. SIAM J. Control Optim. 39 73-96.
  • [24] SONER, H. M. and TOUZI, N. (2001). Dy namic programming for stochastic target problems and geometric flows. J. European Math. Soc. 4 201-236.
  • [25] SONER, H. M. and TOUZI, N. (2002). Level set characterization of stochastic target problems. Comm. Partial Differential Equations 27 2031-2053.