The Annals of Probability

On random walks on wreath products

C. Pittet and L. Saloff-Coste

Full-text: Open access


Wreath products are a type of semidirect product. They play an important role in group theory. This paper studies the basic behavior of simple random walks on such groups and shows that these walks have interesting, somewhat exotic behaviors. The crucial fact is that the probability of return to the starting point of certain walks on wreath products is closely related to some functionals of the local times of a walk taking place on a simpler factor group.

Article information

Ann. Probab., Volume 30, Number 2 (2002), 948-977.

First available in Project Euclid: 7 June 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization 60G51: Processes with independent increments; Lévy processes 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]

random walk finitely generated groups wreath product number of visited points local time amenable group


Pittet, C.; Saloff-Coste, L. On random walks on wreath products. Ann. Probab. 30 (2002), no. 2, 948--977. doi:10.1214/aop/1023481013.

Export citation


  • [1] ALEXOPOULOS, G. (1992). A lower estimate for central probabilities on polycyclic groups. Canad. J. Math. 44 897-910.
  • [2] BASS, H. (1972). The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc. 25 603-614.
  • [3] BAUMSLAG, G. (1972). On finitely presented metabelian groups. Bull. Amer. Math. Soc. 78 279-279.
  • [4] BAUMSLAG, G. (1973). Subgroups of finitely presented metabelian groups. Collection of articles dedicated to the memory of Hanna Neumann I. J. Austral. Math. Soc. 16 98-110.
  • [5] CHAVEL, I. (1993). Riemannian Geometry: A Modern Introduction. Cambridge Univ. Press.
  • [6] COULHON, T. and GRIGOR'YAN, A. (1997). On-diagonal lower bounds for heat kernels and Markov chains. Duke Math. J. 89 133-199.
  • [7] COULHON, T., GRIGOR'YAN, A. and PITTET, C. (2001). A geometric approach to on-diagonal heat kernel lower bounds on groups. Ann. Inst. Fourier (Grenoble) 51 1763-1827.
  • [8] COULHON, T. and SALOFF-COSTE, L. (1993). Isopérimétrie sur les groupes et les variétés. Rev. Mat. Iberoamericana 9 293-314.
  • [9] DELMOTTE, T. (1999). Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15 181-232.
  • [10] DIXMIER, J. (1960). Operateurs de rang fini dans les representations unitaires. Inst. Hautes Études Sci. Publ. Math. 6 13-25.
  • [11] DONSKER, M. and VARADHAN, S. (1979). On the number of distinct sites visited by a random walk. Comm. Pure Appl. Math. 32 721-747.
  • [12] DVORETZKY, A. and ERDÖS, P. (1951). Some problems on random walk in space. Proc. Second Berkeley Symp. Math. Statist. Probab. 353-367. Univ. California Press.
  • [13] DYUBINA, A. (1999). An example of the rate of departure to infinity for a random walk on a group. Uspekhi Mat. Nauk 54 159-160. [English translation in Russian Math. Surveys 54 (1999) 1023-1024.]
  • [14] DYUBINA, A. (1999). Characteristics of random walks on the wreath products of groups. Zap.
  • Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 256. [(1999). Teor. Predst. Din. Sist. Komb. i Algoritm. Metody 3 31-37, 264.]
  • [15] FELLER, W. (1968). An Introduction to Probability Theory and Its Applications 1, 3rd ed. Wiley, New York.
  • [16] FØLNER, E. (1955). On groups with full Banach mean value. Math. Scand. 3 243-254.
  • [17] GRIGORCHUK, R. (1991). On growth in group theory. In Proceedings of the International Congress of Mathematicians 325-338. Math. Soc. Japan, Tokyo.
  • [18] GRIGORCHUK, R. and ZUK, A. (2001). The Lamplighter group as a group generated by a 2-state automaton and its spectrum. Geom. Dedicata 87 209-244.
  • [19] GROMOV, M. (1981). Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53 53-73.
  • [20] GROMOV, M. (1993). Asymptotic invariants of infinite groups. In Geometric Group Theory II (G. A. Niblo and M. A. Roller, eds.) 1-295. Cambridge Univ. Press.
  • [21] GUIVARC'H, Y. (1971). Groupes de Lie à croissance polynomiale. C. R. Acad. Sci. Paris Sér. A 272 1695-1696.
  • [22] HALL, Ph. (1957). Nilpotent groups. In Collected Works of Philip Hall. Oxford Univ. Press.
  • [23] DE LA HARPE, P. (2000). Topics in Geometric Group Theory. Chicago Lectures in Math. Univ. Chicago Press.
  • [24] HEBISCH, W. (1998). On random walk on discrete solvable groups. Preprint.
  • [25] HEBISCH, W. and SALOFF-COSTE, L. (1993). Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 673-709.
  • [26] HUGHES, B. D. (1995). Random Walks and Random Environments 1. Oxford Univ. Press.
  • [27] KAIMANOVICH, V. and VERSHIK, A. (1983). Random walks on discrete groups: boundary and entropy. Ann. Probab. 11 457-490.
  • [28] KANAI, M. (1985). Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds. J. Math. Soc. Japan 37 391-413.
  • [29] KESTEN, H. (1959). Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 336-354.
  • [30] KESTEN, H. (1959). Full Banach mean values on countable groups. Math. Scand. 7 146-156.
  • [31] LYONS, R., PEMANTLE, R. and PERES, Y. (1996). Random walk on the Lamplighter group. Ann. Probab. 24 1993-2006.
  • [32] LYONS, T. (1992). Random thoughts on reversible potential theory. Joensuun Yliop. Luonnont. Julk. 26 71-114.
  • [33] MILNOR, J. (1968). Growth of finitely generated solvable groups. J. Differential Geom. 2 447- 449.
  • [34] MOSTOW, G. D. (1954). Fundamental groups of homogeneous spaces. Ann. of Math. 60 1-27.
  • [35] PATERSON, A. (1988). Amenability. Amer. Math. Soc., Providence, RI.
  • [36] PITTET, Ch. (1995). Følner sequences on polycyclic groups. Rev. Mat. Iberoamericana 11 675- 685.
  • [37] PITTET, Ch. and SALOFF-COSTE, L. (1997). A survey on the relationships between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples. Preprint.
  • [38] PITTET, Ch. and SALOFF-COSTE, L. (1999). Amenable groups, isoperimetric profiles and random walks. In Geometric Group Theory Down Under (J. Cossey, Ch. Miller III, W. Neumann and M. Shapiro, eds.) 293-316. De Gruyter, Berlin.
  • [39] PITTET, Ch. and SALOFF-COSTE, L. (1999). Random walk and isoperimetry on discrete subgroups of Lie groups. In Random Walks and Discrete Potential Theory (M. Picardello and W. Woess, eds.) 306-319. Cambridge Univ. Press.
  • [40] PITTET, Ch. and SALOFF-COSTE, L. (2001). On the stability of the behavior of random walks on groups. J. Geom. Anal. 10 701-726.
  • [41] REVELLE, D. (2001). Rate of escape of random walk on wreath products and related groups. Preprint.
  • [42] REVELLE, D. (2001). Heat kernel asymptotics on the lamplighter group. Preprint.
  • [43] ROBINSON, D. J. S. (1993). A Course in the Theory of Groups. Springer, New York.
  • [44] SALOFF-COSTE, L. (2001). Probability on groups: random walks and invariant diffusions. Notices Amer. Math. Soc. 48 968-977.
  • [45] SPITZER, F. (1964). Principle of Random Walk. Van Nostrand, New York.
  • [46] TITS, J. (1972). Free subgroups in linear groups. J. Algebra 20 250-270.
  • [47] VAN DEN DRIES, L. and WILKIE, A. (1984). Gromov's theorem on groups of polynomial growth and elementary logic. J. Algebra 89 349-374.
  • [48] VAROPOULOS, N. (1983). A potential theoretic property of soluble groups. Bull. Sci. Math. 108 263-273.
  • [49] VAROPOULOS, N. (1983). Random walks on soluble groups. Bull. Sci. Math. 107 337-344.
  • [50] VAROPOULOS, N. (1985). Théorie du potentiel sur les groupes nilpotents. C. R. Acad. Sci. Paris Sér. I Math. 301 143-144.
  • [51] VAROPOULOS, N. (1986). Théorie du potentiel sur des groupes et des variétés. C. R. Acad. Sci. Paris Sér. I Math. 302 203-205.
  • [52] VAROPOULOS, N. (1991). Analysis and geometry on groups. In Proceedings of the International Congress of Mathematicians 951-957. Math. Soc. Japan, Tokyo.
  • [53] VAROPOULOS, N. (1991). Groups of superpolynomial growth. In Proceedings of the Kyoto ICM Satellite Conference on Harmonic Analysis 194-200. Springer, Tokyo.
  • [54] VAROPOULOS, N., SALOFF-COSTE, L. and COULHON, T. (1992). Analysis and Geometry on Groups. Cambridge Univ. Press.
  • [55] WOESS, W. (1994). Random walks on infinite graphs and groups-a survey on selected topics. Bull. London Math. Soc. 26 1-60.
  • [56] WOESS, W. (2000). Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press.
  • [57] WOLF, J. (1968). Growth of finitely generated solvable groups and curvature of Riemannian manifolds. J. Differential Geom. 2 424-446.
  • [58] ZUK, A. (1999). A generalized Følner condition and the norms of random walk operators on groups. Enseign. Math. (2) 45 321-348.
  • ITHACA, NEW YORK 14853