The Annals of Probability

First order correction for the hydrodynamic limit of symmetric simple exclusion processes with speed change in dimension $d\geq 3$

Elise Janvresse

Full-text: Open access

Abstract

The hydrodynamic limit of the symmetric simple exclusion process with speed change is given by a diffusive equation in the appropriate scale. Following the nongradient method introduced by Varadhan and the Navier-Stokes methods developed by Yau, we prove that in the same scale, the next order correction is given by a third order equation for dimension $d \geq 3$.

Article information

Source
Ann. Probab., Volume 26, Number 4 (1998), 1874-1912.

Dates
First available in Project Euclid: 31 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1022855886

Digital Object Identifier
doi:10.1214/aop/1022855886

Mathematical Reviews number (MathSciNet)
MR1675012

Zentralblatt MATH identifier
0935.60096

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82C22: Interacting particle systems [See also 60K35]

Keywords
Infinite interacting particle systems hydrodynamic limit nongradient methods symmetric simple exclusion process

Citation

Janvresse, Elise. First order correction for the hydrodynamic limit of symmetric simple exclusion processes with speed change in dimension $d\geq 3$. Ann. Probab. 26 (1998), no. 4, 1874--1912. doi:10.1214/aop/1022855886. https://projecteuclid.org/euclid.aop/1022855886


Export citation

References

  • [1] Dobrushin, R. L. (1989). Caricatures of hydrodynamics. In IXth International Congress on Mathematical Physics (I. M. Davies, B. Simon and A. Truman, eds.) 117-132. Hilger, Bristol, UK.
  • [2] Esposito, R. and Marra, R. (1993). On the derivation of the incompressible Navier-Stokes equation for Hamiltonian particle systems. J. Statist. Phys. 74 981-1004.
  • [3] Esposito, R., Marra, R. and Yau, H. T. (1994). Diffusive limit of asymmetric simple exclusion. In On Three Levels (M. Fannes, ed.) 324 43-53. NATO, Brussels.
  • [4] Guo, M., Papanicolaou, G. C. and Varadhan, S. R. S. (1988). Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm. Math. Phys. 118 31-59.
  • [5] Kipnis, C. and Landim, C. (1997). Hydrodynamic limit of interacting particle systems. Unpublished manuscript.
  • [6] Landim, C., Olla, S. and Yau, H. T. (1996). Some properties of the diffusion coefficient for asymmetric simple exclusion processes. Ann. Probab. 24 1779-1808.
  • [7] Landim, C., Olla, S. and Yau, H. T. (1997). First order correction for the hydrodynamic limit of asymmetric simple exclusion processes in dimension d 3. Comm. Pure Appl. Math. 50 149-203.
  • [8] Reed, M. and Simon, B. (1975). Methods of Modern Mathematical Physics 2. Academic Press, New York.
  • [9] Rezakhanlou, F. (1991). Hydrodynamic limit for attractive particle systems on Zd. Comm. Math. Phys. 140 417-448.
  • [10] Varadhan, S. R. S. (1990). Nonlinear diffusion limit for a system with nearest neighbor interactions II. In Proc. Tanigushi Symp.
  • [11] Yau, H. T. (1991). Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22 63-80.