The Annals of Probability

Range of fluctuation of Brownian motion on a complete Riemannian manifold

Alexander Grigor'yan and Mark Kelbert

Full-text: Open access

Abstract

We investigate the escape rate of the Brownian motion $W_x (t)$ on a complete noncompact Riemannian manifold. Assuming that the manifold has at most polynomial volume growth and that its Ricci curvature is bounded below, we prove that $$\dist (W_x (t), x) \leq \sqrt{Ct \log t}$$ for all large $t$ with probability 1. On the other hand, if the Ricci curvature is nonnegative and the volume growth is at least polynomial of the order $n > 2$ then $$\dist (W_x (t), x) \geq \frac{\sqrt{Ct}}{\log^{1/(n-2)} t \log \log^{(2+\varepsilon)/(n-2)} t} again for all large $t$ with probability 1 (where $\varepsilon > 0$).

Article information

Source
Ann. Probab., Volume 26, Number 1 (1998), 78-111.

Dates
First available in Project Euclid: 31 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1022855412

Digital Object Identifier
doi:10.1214/aop/1022855412

Mathematical Reviews number (MathSciNet)
MR1617042

Zentralblatt MATH identifier
0934.58023

Subjects
Primary: 58G32 58G11
Secondary: 60G17: Sample path properties 60F15: Strong theorems

Keywords
Brownian motion heat kernel Riemannian manifold escape rate the law of the iterated logarithm

Citation

Grigor'yan, Alexander; Kelbert, Mark. Range of fluctuation of Brownian motion on a complete Riemannian manifold. Ann. Probab. 26 (1998), no. 1, 78--111. doi:10.1214/aop/1022855412. https://projecteuclid.org/euclid.aop/1022855412


Export citation

References

  • [1] Bingham, N. H. (1986). Variants on the law of the iterated logarithm. Bull. London Math. Soc. 18 433-467.
  • [2] Buser, P. (1982). A note on the isoperimetric constant. Ann. Sci. Ecole. Norm. Sup. 15 213- 230.
  • [3] Cheng, S. Y. and Yau, S.-T. (1975). Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28 333-354.
  • [4] Coulhon, T. and Grigor'yan, A. (1997). On-diagonal lower bounds for heat kernels on noncompact manifolds and Markov chains. Duke Math. J. 89 To appear.
  • [5] Dvoretzky, A. and Erd ¨os, P. (1951). Some problems on random walks in space. Proc. Second Berkeley Symp. Math. Statist. Probab. 353-367. Univ. California Press, Berkeley.
  • [6] Grigor'yan, A. (1986). On stochastically complete manifolds. Dokl. Akad. Nauk SSSR 260 534-537. [In Russian; English translation in Soviet Math. Dokl. 34 (1987) 310-313.]
  • [7] Grigor'yan, A. (1987). On the fundamental solution of the heat equation on an arbitrary Riemannian manifold. Mat. Zametki 41 687-692. [In Russian; English translation in Math. Notes (1987) 41 386-389.]
  • [8] Grigor'yan, A. (1991). The heat equation on non-compact Riemannian manifolds. Mat. Sb. 182 55-87. [In Russian; English translation in Math. USSR-Sb. (1992) 72 47-77.]
  • [9] Grigor'yan, A. (1994). Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana 10 395-452.
  • [10] Grigor'yan, A. (1994). Gaussian upper bounds for the heat kernel and for its derivatives on a Riemannian manifold. In Proceedings of the ARW on Potential Theory (K. Gowri Sankaran, ed.) 237-252. Kluwer, Dordrecht.
  • [11] It o, K. and McKean, H. (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin.
  • [12] Li, P. and Yau, S.-T. (1986). On the parabolic kernel of the Schr¨odinger operator. Acta Math. 156 153-201.
  • [13] Saloff-Coste, L. (1992). A note on Poincar´e, Sobolev, and Harnack inequalities. Duke Math J. I.M.R.N. 2 27-38.
  • [14] Stroock, D. W. (1993). Probability Theory. An Analytic View. Cambridge Univ. Press.