The Annals of Probability

On the Asymptotic Distributions of Partial Sums of Functionals of Infinite-Variance Moving Averages

Tailen Hsing

Full-text: Open access

Abstract

This paper investigates the asymptotic distribution of the partial sum, $S_N=\sum_{n=1}^N [K(X_n)-EK(X_n)]$, as $N \to \infty$, where ${X_n}$ is a moving average stable process and $K$ is a bounded and measurable function. The results show that $S_N$ follows a central or non-central limit theorem depending on the rate at which the moving average coefficients tend to 0.

Article information

Source
Ann. Probab., Volume 27, Number 3 (1999), 1579-1599.

Dates
First available in Project Euclid: 29 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1022677460

Digital Object Identifier
doi:10.1214/aop/1022677460

Mathematical Reviews number (MathSciNet)
MR1733161

Zentralblatt MATH identifier
0961.60038

Subjects
Primary: 60F05.

Keywords
Central and noncentral limit theorems

Citation

Hsing, Tailen. On the Asymptotic Distributions of Partial Sums of Functionals of Infinite-Variance Moving Averages. Ann. Probab. 27 (1999), no. 3, 1579--1599. doi:10.1214/aop/1022677460. https://projecteuclid.org/euclid.aop/1022677460


Export citation

References

  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Bradley, R. (1986). Basic properties of strong mixing conditions. In Dependence in Probability and Statistics (E. Eberlein and M. S. Taqqu, eds.) 162-192. Birkh¨auser, Boston.
  • Breuer, P. and Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 425-441.
  • Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.
  • Davis, R. A. and Hsing, T. (1995). Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23 879-917.
  • Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields.Wahrsch. Verw. Gebiete 50 27-52.
  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2. Wiley, New York.
  • Gorodetskii, V. V. (1977). On the strong mixing property for linear processes. Theory Probab. Appl. 22 411-413.
  • Ho, H.-C. and Hsing, T. (1997). Limit theorems for functionals of moving averages. Ann. Probab. 25 1636-1669.
  • Kokoszka, P. S. and Taqqu, M. S. (1996). Parameter estimation for infinite variance fractional ARIMA. Ann. Statist. 24 1880-1913.
  • Peligrad, M. (1986). Recent advances in the central limit theorem and its weak invariance principle for mixing sequences of random variables. In Dependence in Probability and Statistics (E. Eberlein and M. S. Taqqu, eds.) 193-223. Birkh¨auser, Boston.
  • Pham, T. D. and Tran, T. T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303.
  • Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York. Taqqu, M. S. (1979) Convergence of integrated processes of arbitrary Hermite rank.Wahrsch. Verw. Gebiete 50 53-83.
  • Withers, C. S. (1975). Convergence of empirical processes of mixing random variables on 0 1. Ann. Statist. 3 1101-1108.