The Annals of Probability

Typical Configurations for One-Dimensional Random Field Kac Model

Marzio Cassandro, Enza Orlandi, and Pierre Picco

Full-text: Open access


In this paper we study the typical profiles of a random field Kac model. We give upper and lower bounds of the space scale where the profiles are constant. The results hold almost surely with respect to the realizations of the random field. The analysis is based on a block-spin construction, deviation techniques for the local empirical order parameters and concentration inequalities for the realizations of the random magnetic field. For the upper bound, we exhibit a scale related to the law of the iterated logarithm, where the random field makes an almost sure fluctuation that obliges the system to break its rigidity. For the lower bound, we prove that on a smaller scale the fluctuations are not strong enough to allow this transition.

Article information

Ann. Probab., Volume 27, Number 3 (1999), 1414-1467.

First available in Project Euclid: 29 May 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82B43: Percolation [See also 60K35]

Large deviations Kac potentials deviation inequality local central limit theorem law of the iterated logarithm


Cassandro, Marzio; Orlandi, Enza; Picco, Pierre. Typical Configurations for One-Dimensional Random Field Kac Model. Ann. Probab. 27 (1999), no. 3, 1414--1467. doi:10.1214/aop/1022677454.

Export citation


  • 1 AHARONY, A. 1978. Tricritical points in systems with random fields. Phys. Rev. B 18 3318 3327.
  • 2 AIZENMAN, M. and WEHR, J. 1990. Rounding of first order phase transitions in systems with quenched disorder. Comm. Math. Phys. 130 489 528.
  • 5 BERETTI, A. 1985. Some properties of random Ising models. J. Statist. Phys. 38 483.
  • 6 BLEHER, P., RUIZ, J. and ZAGREBNOV, V. 1996. One-dimensional random-field Ising model: Gibbs states and structure of ground states. J. Statist. Phys. 84 1077 1093.
  • 7 BODINEAU, T. 1996. Interface in a one-dimensional Ising spin system. Stochastic Process Appl. 61 1 23.
  • 8 BOVIER, A., GAYRARD, V. and PICCO, P. 1997. Distribution of profiles for the Kac Hopfield model. Comm. Math. Phys. 186 323 379.
  • 9 BRICMONT, J. and KUPIAINEN, A. 1988. Phase transition in the three-dimensional random field Ising model. Comm. Math. Phys. 116 539 572.
  • 10 CASSANDRO, M., ORLANDI, E. and PRESUTTI, E. 1993. Interfaces and typical Gibbs configurations for one-dimensional Kac potentials. Probab. Theory Related Fields 96 57 96.
  • 11 CHALKER, J. T. 1983. On the lower critical dimensionality of the Ising model in a random field. J. Phys. C: Sol. State Phys. 16 6615 6622.
  • 12 CHOW, Y. S. and TEICHER, H. 1978. Probability Theory: Independence, Interchangeability, Martingales. Springer, Berlin.
  • 15 FISHER, D. S., FROHLICH, J. and SPENCER, T. 1984. The Ising model in a random magnetic ¨ field. J. Statist. Phys. 34 863 870.
  • 16 IMBRIE, J. 1985. The ground states of the three-dimensional random field Ising model. Comm. Math. Phys. 98 145 176.
  • 17 IMRY, Y. and MA, S. K. 1975. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35 1399 1401.
  • 18 KAC, M., UHLENBECK, G. and HEMMER, P. C. 1963, 1964. On the van der Waals theory of vapour-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4 216 228; II. Discussion of the distribution functions. J. Math. Phys. 4 229 247; III. Discussion of the critical region. J. Math. Phys. 5 60 74.
  • 19 KHANIN, K. M. and SINAI, Y. 1979. Existence of free energy for models with long range random Hamiltonian. J. Statist. Phys. 20 573 584.
  • 20 KULSKE, C. 1997. Metastates in disordered mean field models: random field and Hopfield ¨ models. J. Statist. Phys. 88 1257 1293.
  • 21 LEBOWITZ, J. and PENROSE, O. 1966. Rigorous treatment of the Van der Waals Maxwell theory of the liquid-vapour transition. J. Math. Phys. 7 98 113.
  • 22 LEDOUX, M. 1996. On Talagrand's deviation inequalities for product measures. ESAIM: Probab. Statist. 1 63 87.
  • 23 LEDOUX, M. and TALAGRAND, M. 1991. Probability in Banach Spaces. Springer, Berlin.
  • 24 MATHIEU, P. and PICCO, P. 1998. Metastability and convergence to equilibrium for the Random field Curie Weiss model. J. Statist. Phys. 91 679 732.
  • 25 PENROSE, O. and LEBOWITZ, J. L. 1987. Towards a rigorous molecular theory of metastability. In Fluctuation Phenomena E. W. Montroll and J. L. Lebowitz, eds.. North-Holland, Amsterdam.
  • 26 RENYI, A. 1970. Probability Theory. North-Holland, Amsterdam. ´
  • 27 ROBBINS, H. 1955. A remark on Stirling's formula. Amer. Math. Monthly 62 26 29.
  • 28 SALINAS, S. R. and WRESZINSKI, W. F. 1985. On the mean field Ising model in a random external field. J. Statist. Phys. 41 299 313.
  • 29 SALOMON, F. 1975. Random walks in random environment. Ann. Probab. 3 1 31.
  • 30 SINAI, Y. 1982. The limiting behavior of a one-dimensional random walk in random environment. Theory Probab. Appl. 27 256 268.
  • 31 STOUT, W. J. 1974. Almost Sure Convergence. Academic Press, New York.
  • 32 TALAGRAND, M. 1995. Concentration of measure and isoperimetric inequalities in product space. Publ. Math. I.H.E.S. 81 73 205.
  • 33 THOMPSON, C. 1972. Mathematical Statistical Mechanics. MacMillan, London.
  • 35 YAU, H.-T. 1996. Logarithmic Sobolev inequality for lattice gases with mixing conditions. Comm. Math. Phys. 181 367 408.
  • 36 YURINSKII, V. V. 1976. Exponential inequalities for sums of random vectors. J. Multivariate Anal. 6 473 499.