The Annals of Probability

The Complete Convergence Theorem for Coexistent Threshold Voter Models

Shirin J. Handjani

Full-text: Open access

Abstract

We consider the $d$-dimensional threshold voter model. It is known that, except in the one-dimensional nearest-neighbor case, coexistence occurs (nontrivial invariant measures exist). In fact, there is a nontrivial limit $\eta_\infty^{1/2}$ obtained by starting from the product measure with density 1/2. We show that in these coexistent cases,

\eta_t \Rightarrow \alpha\delta_0 + \beta\delta_1 + (1 - \alpha - \beta)\eta^{1/2}_\infty \quad\text{as $t \to \infty$},

where $\alpha=P(\tau_0<\infty), \beta=P(\tau_1<\infty), \tau_0$ and $\tau_1$ are the first hitting times of the all-zero and all-one configurations, respectively, and $\Rightarrow$ denotes weak convergence.

Article information

Source
Ann. Probab., Volume 27, Number 1 (1999), 226-245.

Dates
First available in Project Euclid: 29 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1022677260

Digital Object Identifier
doi:10.1214/aop/1022677260

Mathematical Reviews number (MathSciNet)
MR1681118

Zentralblatt MATH identifier
0974.60093

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Spin systems coexistence voter models complete convergence

Citation

Handjani, Shirin J. The Complete Convergence Theorem for Coexistent Threshold Voter Models. Ann. Probab. 27 (1999), no. 1, 226--245. doi:10.1214/aop/1022677260. https://projecteuclid.org/euclid.aop/1022677260


Export citation

References

  • Andjel, E. D., Liggett, T. M. and Mountford, T. (1992). Clustering in one-dimensional threshold voter models. Stochastic Process. Appl. 42 73-90.
  • Bezuidenhout, C. and Gray, L. (1994). Critical attractive spin systems. Ann. Probab. 22 1160- 1194.
  • Bramson, M., Ding, W. D. and Durrett, R. (1991). Annihilating branching processes. Stochastic Process. Appl. 37 1-17.
  • Cox, J. T. and Durrett, R. (1991). Nonlinear voter models. In Random Walks, Brownian Motion and Interacting Particle Systems. A Festschrift in Honor of Frank Spitzer 189-201. Birkh¨auser, Boston.
  • Durrett, R. (1995). Ten Lectures on Particle Systems. Lecture Notes in Math. 1608. Springer, New York.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • Liggett, T. M. (1994). Coexistence in threshold voter models. Ann. Probab. 22 764-802.