The Annals of Probability

Decomposition of stationary $\alpha$-stable random fields

Jan Rosi{\'n}ski

Full-text: Open access


This work is concerned with the structural analysis of stationary $\alpha$-stable random fields. Three distinct classes of such random fields are characterized and it is shown that every stationary $\alpha$-stable random field can be uniquely decomposed into the sum of three independent components belonging to these classes. Various examples of stationary $\alpha$-stable random fields are discussed in this context.

Article information

Ann. Probab., Volume 28, Number 4 (2000), 1797-1813.

First available in Project Euclid: 18 April 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G10
Secondary: 60G07: General theory of processes 60E07: Infinitely divisible distributions; stable distributions 60G57: Random measures

Stable random fields stationarity stochastic integral representation nonsingular flow cocycle mixed moving average harmonizable random field


Rosi{\'n}ski, Jan. Decomposition of stationary $\alpha$-stable random fields. Ann. Probab. 28 (2000), no. 4, 1797--1813. doi:10.1214/aop/1019160508.

Export citation


  • [1] Gross, A. and Weron, A. (1994). On measure-preserving transformations and doubly stationary symmetric stable processes. Studia Math. 114 275-287.
  • [2] Janicki, A. and Weron, A. (1994). Simulation and Chaotic Behavior of -stable Stochastic Processes. Dekker, New York.
  • [3] Kallenberg, O. (1975). Random Measures. Springer, New York.
  • [4] Krengel, U. (1969). Darstellungss¨atze f ¨ur str¨omungen und halbstr¨omungen. I. Math. Ann. 182 1-39.
  • [5] Rosi ´nski, J. (1994). On the uniqueness of the spectral representation of stable processes. J. Theoret. Probab. 7 615-634.
  • [6] Rosi ´nski, J. (1995). On the structure of stationary stable processes. Ann. Probab. 23 1163-1187.
  • [7] Samorodnitsky, G. and Taqqu, M. S. (1994). Non-Gaussian Stable Processes. Chapman and Hall, London.
  • [8] Surgailis, D., Rosi ´nski, J., Mandrekar, V. and Cambanis, S. (1993). Stable mixed moving averages. Probab. Theory Related Fields 97 543-558.
  • [9] Varadarajan, V. S. (1970). Geometry of Quantum Theory 2. Van Nostrand Reinhold, New York.
  • [10] ziemmer, R. J. (1984). Ergodic Theory and Semisimple Groups. Birkh¨auser. Boston.