The Annals of Probability

How to Find an extra Head: Optimal Random Shifts of Bernoulli and Poisson Random Fields

Alexander E. Holroyd and Thomas M. Liggett

Full-text: Open access

Abstract

We consider the following problem:given an i.i.d. family of Bernoulli random variables indexed by $\mathbb{Z}^d$, find a random occupied site $X \in \mathbb{Z}^d$ such that relative to $X$, the other random variables are still i.i.d. Bernoulli. Results of Thorisson imply that such an $X$ exists for all $d$. Liggett proved that for$d = 1$, there exists an $X$ with tails $P(|X|\geq t)$ of order $ct^(-1 /2}$, but none with finite $1/2$th moment. We prove that for general $d$ there exists a solution with tails of order $ct^{-d/2}$, while for $d = 2$ there is none with finite first moment. We also prove analogous results for a continuum version of the same problem. Finally we prove a result which strongly suggests that the tail behavior mentioned above is the best possible for all$d$.

Article information

Source
Ann. Probab., Volume 29, Number 4 (2001), 1405-1425.

Dates
First available in Project Euclid: 5 March 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1015345755

Digital Object Identifier
doi:10.1214/aop/1015345755

Mathematical Reviews number (MathSciNet)
MR1880225

Zentralblatt MATH identifier
1019.60048

Subjects
Primary: 60G60: Random fields
Secondary: 60G55: Point processes 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
product measure random shift Poisson process tagged particle shift coupling

Citation

Holroyd, Alexander E.; Liggett, Thomas M. How to Find an extra Head: Optimal Random Shifts of Bernoulli and Poisson Random Fields. Ann. Probab. 29 (2001), no. 4, 1405--1425. doi:10.1214/aop/1015345755. https://projecteuclid.org/euclid.aop/1015345755


Export citation

References

  • [1] Alexander, K. (1987). Central limit theorems for stochastic processes under random entropy conditions. Probability Theory Related Fields 75 351-378.
  • [2] Burton, R. M. and Keane, M. (1991). Topological and metric properties of infinite clusters in stationary two-dimensional site percolation. Israel J. Math. 76 299-316.
  • [3] Butz, A. R. (1969). Convergence with Hilbert's space-filling curve. J. Comput. System Sci. 3 128-146.
  • [4] Fristedt, B. and Gray, L. (1997). A Modern Approach to Probability Theory. Birkh¨auser, Boston.
  • [5] Hilbert, D. (1891). ¨Uber die stetige abbildung einer linie auf ein fl¨achenst ¨uck. Math. Ann. 38 459-460.
  • [6] Kuelbs, J. (1968). The invariance principle for a lattice of random variables. Ann. Math. Statist. 39 382-389.
  • [7] Liggett, T. M. (2001). Tagged particle distributions, or how to choose a head at random. In Proceedings of the 2000 Brazilian Summer School in Probability. To appear. Birkh¨auser, Boston.
  • [8] Sagan, H. (1994). Space-Filling Curves. Springer, Berlin.
  • [9] Thorisson, H. (1996). Transforming random elements and shifting random fields. Ann. Probab. 24 2057-2064.
  • [10] Thorisson, H. (2000). Coupling, Stationarity and Regeneration. Springer, Berlin.