The Annals of Probability

Super-Brownian Limits of Voter Model Clusters

Maury Bramson, J.Theodore Cox, and Jean-François Le Gall

Full-text: Open access

Abstract

The voter model is one of the standard interacting particle systems. Two related problems for this process are to analyze its behavior, after large times $t$, for the sets of sites (1) sharing the same opinion as the site 0, and (2) having the opinion that was originally at 0. Results on the sizes of these sets were given by Sawyer (1979)and Bramson and Griffeath (1980). Here, we investigate the spatial structure of these sets in $d \geq 2$, which we show converge to quantities associated with super-Brownian motion, after suitable normalization. The main theorem from Cox, Durrett and Perkins (2000) serves as an important tool for these results.

Article information

Source
Ann. Probab., Volume 29, Number 3 (2001), 1001-1032.

Dates
First available in Project Euclid: 5 March 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1015345593

Digital Object Identifier
doi:10.1214/aop/1015345593

Mathematical Reviews number (MathSciNet)
MR1872733

Zentralblatt MATH identifier
1029.60078

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60G57: Random measures
Secondary: 60F05: Central limit and other weak theorems 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Keywords
Voter model super-Brownian motion coalescing random walk

Citation

Bramson, Maury; Cox, J.Theodore; Le Gall, Jean-François. Super-Brownian Limits of Voter Model Clusters. Ann. Probab. 29 (2001), no. 3, 1001--1032. doi:10.1214/aop/1015345593. https://projecteuclid.org/euclid.aop/1015345593


Export citation

References

  • [1] Abraham, R. and Le Gall, J. F. (1994). Sur la mesure de sortie du super-mouvement brownien. Probab. Theory Related Fields 99 251-275.
  • [2] Arratia, R. (1979). Coalescing Brownian motion and the voter model on. Ph.D. dissertation, Univ. Wisconsin, Madison.
  • [3] Arratia, R. (1981). Limiting point processes for rescalings of coalescing and annihilating random walks on d Ann. Probab. 9 909-936.
  • [4] Bramson, M. and Griffeath, D. (1980). Asymptotics for interacting particle systems on dWahrsch Verw. Gebiete 53 183-196.
  • [5] Clifford, P. and Sudburry, A. (1973). A model for spatial conflict. Biometrika 60 581-588.
  • [6] Cox, J. T. and Durrett, R. (1995). Hybrid zones and voter model interfaces. Bernoulli 1 343-370.
  • [7] Cox, J. T., Durrett, R. and Perkins, E. (2000). Rescaled voter models converge to superBrownian motion. Ann. Probab. 28 185-234.
  • [8] Dawson, D. A. (1975). Stochastic evolution equations and related measures processes. J. Multivariate Anal. 3 1-52.
  • [9] Dawson, D. A. (1993). Measure-valued Markov processes. ´Ecole d' ´Et´e de Probabilit´es de Saint Flour XXI. Lecture Notes in Math. 1541 1-260. Springer, Berlin.
  • [10] Dawson, D. A. and Perkins, E. (1991). Historical processes. Mem. Amer. Math. Soc. 454 1-179.
  • [11] Durrett, R. (1996). Stochastic Spatial Models. PCMI Lecture Notes, IAS, Princeton.
  • [12] Dynkin, E. B. (1993). Superprocesses and partial differential equations. Ann. Probab. 21 1185-1262.
  • [13] El Karoui, N. and Roelly, S. (1991). Propri´et´es de martingales, explosion et repr´esentation de L´evy-Khintchine d'une classe de processus de branchement a valeurs mesures. Stochastic Process. Appl. 38 239-266.
  • [14] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes, Characterization and Convergence. Wiley, New York.
  • [15] Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Springer, New York.
  • [16] Holley, R. A. and Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 643-663.
  • [17] Le Gall, J.-F. (1991). Brownian excursions, trees and measure-valued branching processes. Ann. Probab. 19 1399-1439.
  • [18] Le Gall, J.-F. (1999). Spatial Branching Processes, Random Snakes, And Partial Differential Equations. Birkh¨auser, Boston.
  • [19] Le Gall, J.-F. and Perkins, E. (1995). The Hausdorff measure of the support of twodimensional super-Brownian motion. Ann. Probab. 23 1719-1747.
  • [20] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • [21] Perkins, E. (1999). Measure-valued processes and interactions. ´Ecole d' ´Et´e de Probabilit´es de Saint Flour. Lecture Notes in Math. Springer, Berlin. To appear.
  • [22] Sawyer, S. (1979). A limit theorem for patch sizes in a selectively-neutral migration model. J. Appl. Probab. 16 482-495.
  • [23] Spitzer, F. L. (1976). Principles of Random Walk. Springer, New York.
  • [24] Sznitman, A. S. (1988). Propagation of chaos for a system of annihilating Brownian spheres. Comm. Pure Appl. Math. 60 663-690.
  • [25] Watanabe, S. (1968). A limit theorem of branching processes and continuous state branching. J. Math. Kyoto U. 8 141-167.
  • [26] Z¨ahle, I. (1999). Renormalization of the voter model in equilibrium. Preprint.