## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 31, Number 3 (1960), 756-771.

### A Generalization of Group Divisible Designs

#### Abstract

Roy [8] extended the idea of Group Divisible designs of Bose and Connor [1] to $m$-associate classes, calling such designs Hierarchical Group Divisible designs with $m$-associate classes. Subsequently, no literature is found in this direction. The purpose of this paper is to study these designs systematically. A compact definition of the design, under the name Group Divisible $m$-associate (GD $m$-associate) design is given in Section 2. In the same section the parameters of the design are obtained in a slightly different form than that of Roy. The uniqueness of the association scheme from the parameters is shown in Section 3. The designs are divided into $(m + 1)$ classes in Section 4. Some interesting combinatorial properties are obtained in Section 5. The necessary conditions for the existence of a class of these designs are obtained in Section 7. Finally, some numerical illustrations of these designs are given in the Appendix.

#### Article information

**Source**

Ann. Math. Statist., Volume 31, Number 3 (1960), 756-771.

**Dates**

First available in Project Euclid: 27 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoms/1177705802

**Digital Object Identifier**

doi:10.1214/aoms/1177705802

**Mathematical Reviews number (MathSciNet)**

MR121925

**Zentralblatt MATH identifier**

0232.62034

**JSTOR**

links.jstor.org

#### Citation

Raghavarao, Damaraju. A Generalization of Group Divisible Designs. Ann. Math. Statist. 31 (1960), no. 3, 756--771. doi:10.1214/aoms/1177705802. https://projecteuclid.org/euclid.aoms/1177705802