The Annals of Mathematical Statistics

A Comparison of the Asymptotic Expected Sample Sizes of Two Sequential Procedures for Ranking Problem

S. K. Perng

Full-text: Open access

Abstract

The purpose of this paper is to compare the asymptotic expected sample sizes of two sequential procedures for ranking $k$ normal populations with known variance and unknown means for the cases (i) $\mu_1 \leqq \mu_2 \leqq \cdots \leqq \mu_{k-1} < \mu_k$ and (ii) $\mu_k - \mu_{k-1} = \delta^\ast > 0$. The procedures are: (1) the Bechhofer-Kiefer-Sobel (BKS) sequential procedure [1], and (2) Paulson's (P) sequential procedure [2].

Article information

Source
Ann. Math. Statist., Volume 40, Number 6 (1969), 2198-2202.

Dates
First available in Project Euclid: 27 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aoms/1177697299

Digital Object Identifier
doi:10.1214/aoms/1177697299

Zentralblatt MATH identifier
0211.50703

JSTOR
links.jstor.org

Citation

Perng, S. K. A Comparison of the Asymptotic Expected Sample Sizes of Two Sequential Procedures for Ranking Problem. Ann. Math. Statist. 40 (1969), no. 6, 2198--2202. doi:10.1214/aoms/1177697299. https://projecteuclid.org/euclid.aoms/1177697299


Export citation