The Annals of Mathematical Statistics
- Ann. Math. Statist.
- Volume 40, Number 6 (1969), 2198-2202.
A Comparison of the Asymptotic Expected Sample Sizes of Two Sequential Procedures for Ranking Problem
Abstract
The purpose of this paper is to compare the asymptotic expected sample sizes of two sequential procedures for ranking $k$ normal populations with known variance and unknown means for the cases (i) $\mu_1 \leqq \mu_2 \leqq \cdots \leqq \mu_{k-1} < \mu_k$ and (ii) $\mu_k - \mu_{k-1} = \delta^\ast > 0$. The procedures are: (1) the Bechhofer-Kiefer-Sobel (BKS) sequential procedure [1], and (2) Paulson's (P) sequential procedure [2].
Article information
Source
Ann. Math. Statist., Volume 40, Number 6 (1969), 2198-2202.
Dates
First available in Project Euclid: 27 April 2007
Permanent link to this document
https://projecteuclid.org/euclid.aoms/1177697299
Digital Object Identifier
doi:10.1214/aoms/1177697299
Zentralblatt MATH identifier
0211.50703
JSTOR
links.jstor.org
Citation
Perng, S. K. A Comparison of the Asymptotic Expected Sample Sizes of Two Sequential Procedures for Ranking Problem. Ann. Math. Statist. 40 (1969), no. 6, 2198--2202. doi:10.1214/aoms/1177697299. https://projecteuclid.org/euclid.aoms/1177697299