The Annals of Mathematical Statistics

On a Theorem of Bahadur on the Rate of Convergence of Test Statistics

M. Raghavachari

Full-text: Open access

Abstract

Let $x_1, x_2, cdots, x_n$ be $n$ independent and identically distributed random variables whose distribution depends on a parameter $\theta, \theta \in \Theta$. Let $\Theta_0$ be a subset of $\Theta$ and consider the test of the hypothesis that $\theta \in \Theta_0. L_n (x_1, \cdots, x_n)$ is the level attained by a test statistic $T_n(x_1, \cdots, x_n)$ in the sense that it is the maximum probability under the hypothesis of obtaining a value large or larger than $T_n$ where large values of $T_n$ are significant for the hypothesis. Under some assumptions Bahadur [3] showed that where a non-null $\theta$ obtains $L_n$ cannot tend to zero at a rate faster than $\lbrack\rho(\theta)\rbrack^n$ where $\rho$ is a function defined in terms Kullback-Liebler information numbers. In this paper this result has been shown to be true without any assumptions whatsoever (Theorem 1). Some aspects of the relationship between the rate of convergence of $L_n$ and rate of convergence of the size of the tests are also studied and an equivalence property is shown (Theorem 2).

Article information

Source
Ann. Math. Statist., Volume 41, Number 5 (1970), 1695-1699.

Dates
First available in Project Euclid: 27 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aoms/1177696813

Digital Object Identifier
doi:10.1214/aoms/1177696813

Mathematical Reviews number (MathSciNet)
MR266361

Zentralblatt MATH identifier
0223.62049

JSTOR
links.jstor.org

Citation

Raghavachari, M. On a Theorem of Bahadur on the Rate of Convergence of Test Statistics. Ann. Math. Statist. 41 (1970), no. 5, 1695--1699. doi:10.1214/aoms/1177696813. https://projecteuclid.org/euclid.aoms/1177696813


Export citation