Annals of Applied Statistics

Modelling multilevel spatial behaviour in binary-mark muscle fibre configurations

Tilman M. Davies, Matthew R. Schofield, Jon Cornwall, and Philip W. Sheard

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The functional properties of skeletal muscles depend on the spatial arrangements of fast and slow muscle fibre types. Qualitative assessment of muscle configurations suggest that muscle disease and normal ageing are associated with visible changes in the spatial pattern, though a lack of statistical modelling hinders our ability to formally assess such trends. We design a nested Gaussian conditional autoregressive (CAR) model to quantify spatial features of dichotomously marked muscle fibre networks and implement it within a Bayesian framework. Our model is applied to data from a human skeletal muscle and results reveal spatial variation at multiple levels across the muscle. The model provides the foundation for future research in describing the extent of change to normal muscle fibre type parameters under experimental or pathological conditions.

Article information

Source
Ann. Appl. Stat., Volume 13, Number 3 (2019), 1329-1347.

Dates
Received: March 2018
Revised: September 2018
First available in Project Euclid: 17 October 2019

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1571277755

Digital Object Identifier
doi:10.1214/18-AOAS1214

Mathematical Reviews number (MathSciNet)
MR4019141

Zentralblatt MATH identifier
07145959

Keywords
Gaussian process hierarchical model Bayesian inference physiology

Citation

Davies, Tilman M.; Schofield, Matthew R.; Cornwall, Jon; Sheard, Philip W. Modelling multilevel spatial behaviour in binary-mark muscle fibre configurations. Ann. Appl. Stat. 13 (2019), no. 3, 1329--1347. doi:10.1214/18-AOAS1214. https://projecteuclid.org/euclid.aoas/1571277755


Export citation

References

  • Aare, S., Spendiff, S., Vuda, M., Elkrief, D., Perez, A., Wu, Q., Mayaki, D., Hussain, S. N. A., Hettwer, S. and Hepple, R. T. (2016). Failed reinnervation in ageing skeletal muscle. Skeletal Muscle 6 29.
  • Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Stat. Comput. 18 343–373.
  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2015). Hierarchical Modeling and Analysis for Spatial Data, 2nd ed. Monographs on Statistics and Applied Probability 135. CRC Press, Boca Raton, FL.
  • Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 825–848.
  • Chib, S. and Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika 85 347–361.
  • Cornwall, J. and Kennedy, E. (2015). Fibre types of the anterior and lateral cervical muscles. Eur. Spine J. 24 1986–1991.
  • Cornwall, J. and Sheard, P. W. (2012). Spatial aggregation of type II fibres in human cervical muscles. Clin. Anat. 25 533.
  • Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York.
  • Davies, T. M., Cornwall, J. and Sheard, P. W. (2013). Modelling dichotomously marked muscle fibre configurations. Stat. Med. 32 4240–4258.
  • Davies, T. M., Sheard, P. W. and Cornwall, J. (2016). Comment on Makino et al. and observations on spatial modeling. Anat. Sci. Int. 91 423–424.
  • Davies, T. M., Schofield, M. R., Cornwall, J. and Sheard, P. W. (2019). Supplement to “Modelling multilevel spatial behaviour in binary-mark muscle fibre configurations.” DOI:10.1214/18-AOAS1214SUPPA, DOI:10.1214/18-AOAS1214SUPPB.
  • Durante, D. (2018). Conjugate Bayes for probit regression via unified skew-normals. Available at arXiv:1802.09565.
  • Edelsbrunner, H., Kirkpatrick, D. G. and Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Trans. Inform. Theory 29 551–559.
  • Faulkner, J. A., Larkin, L. M., Claflin, D. R. and Brooks, S. V. (2007). Age-related changes in the structure and function of skeletal muscles. Clin. Exp. Pharmacol. Physiol. 34 1091–1096.
  • Finley, A. O., Banerjee, S. and Gelfand, A. E. (2015). spBayes for large univariate and multivariate point-referenced spatio-temporal data models. J. Stat. Softw. 63 1–28.
  • Fonseca, S., Wilson, I. J., Horgan, G. W. and Maltin, C. A. (2003). Slow fiber cluster pattern in pig longissimus thoracis muscle: Implications for myogenesis. J. Anim. Sci. 81 973–983.
  • Gelfand, A. E., Schmidt, A. M., Banerjee, S. and Sirmans, C. F. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. TEST 13 263–312.
  • Hodges, J. S. and Reich, B. J. (2010). Adding spatially-correlated errors can mess up the fixed effect you love. Amer. Statist. 64 325–334.
  • Jin, X., Carlin, B. P. and Banerjee, S. (2005). Generalized hierarchical multivariate CAR models for areal data. Biometrics 61 950–961.
  • Kelly, N. A., Hammond, K. G., Stec, M. J., Bickel, C. S., Windham, S. T., Tuggle, S. C. and Bamman, M. M. (2018). Quantification and characterization of grouped type I myofibers in human aging. Muscle Nerve 57 E52–E59.
  • Lexell, J., Taylor, C. C. and Sjöström, M. (1988). What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84 275–294.
  • Makino, K., Funayama, K. and Ikegaya, Y. (2016). Spatial clusters of constitutively active neurons in mouse visual cortex. Anat. Sci. Int. 91 188–195.
  • Miller, A., Woodley, S. and Cornwall, J. (2016). Fibre types of the longus capitis and longus colli muscles in elderly females. Anat. Sci. Int. 91 163–168.
  • Mosole, S., Carraro, U., Kern, H., Loefler, S., Fruhmann, H., Vogelauer, M., Burggraf, S., Mayr, W., Krenn, M., Paternostro-Sluga, T. et al. (2014). Long-term high-level exercise promotes muscle reinnervation with age. J. Neuropathol. Exp. Neurol. 73 284–294.
  • New Zealand Govt. (2008). Human Tissue Act. Public Act No 28, Wellington.
  • Oberbach, A., Bossenz, Y., Lehmann, S., Niebauer, J., Adams, V., Paschke, R., Schön, M. R., Blüher, M. and Punkt, K. (2006). Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29 895–900.
  • Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Chichester.
  • Pateiro-López, B. and Rodríguez-Casal, A. (2010). Generalizing the convex hull of a sample: The R package alphahull. J. Stat. Softw. 34 1–28.
  • Pernuš, F. (1988). The Delaunay triangulation and the shape hull as tools in muscle fibre analysis. Pattern Recogn. Lett. 8 197–202.
  • Pettitt, A. N., Weir, I. S. and Hart, A. G. (2002). A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Stat. Comput. 12 353–367.
  • R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Ren, Q. and Banerjee, S. (2013). Hierarchical factor models for large spatially misaligned data: A low-rank predictive process approach. Biometrics 69 19–30.
  • Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T. and Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18 529.
  • Takashina, N., Beger, M., Kusumoto, B., Rathnayake, S. and Possingham, H. P. (2018). A theory for ecological survey methods to map individual distributions. Theor. Ecol. 11 213–223.
  • Venema, H. W. (1993). Estimation of the parameters of a binary Markov random field on a graph with application to fibre type distributions in a muscle cross-section. IMA J. Math. Appl. Med. Biol. 10 115–133.
  • Wackernagel, H. (1998). Multivariate Geostatistics: An Introduction with Applications, 2nd ed. Springer, New York.
  • Webster, C., Silberstein, L., Hays, A. P. and Blau, H. M. (1988). Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52 503–513.
  • Weir, I. S. and Pettitt, A. N. (1999). Spatial modelling for binary data using a hidden conditional autoregressive Gaussian process: A multivariate extension of the probit model. Stat. Comput. 9 77–86.
  • Weir, I. S. and Pettitt, A. N. (2000). Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data. J. R. Stat. Soc. Ser. C. Appl. Stat. 49 473–484.

Supplemental materials

  • Geometry, Diagnostics, and $\boldsymbol{\beta}$ Posterior Plots. A PDF document providing additional examples of the geometrical treatment of the muscle data, various diagnostic plots of the MCMC, and additional graphics related to the sampled posteriors of $\boldsymbol{\beta}$.
  • R Code and Data Files. A .zip archive containing R code and data necessary to repeat the analysis. Readers should open muscle.R and follow the instructions therein.