The Annals of Applied Statistics

Causal inference in the context of an error prone exposure: Air pollution and mortality

Xiao Wu, Danielle Braun, Marianthi-Anna Kioumourtzoglou, Christine Choirat, Qian Di, and Francesca Dominici

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We propose a new approach for estimating causal effects when the exposure is measured with error and confounding adjustment is performed via a generalized propensity score (GPS). Using validation data, we propose a regression calibration (RC)-based adjustment for a continuous error-prone exposure combined with GPS to adjust for confounding (RC-GPS). The outcome analysis is conducted after transforming the corrected continuous exposure into a categorical exposure. We consider confounding adjustment in the context of GPS subclassification, inverse probability treatment weighting (IPTW) and matching. In simulations with varying degrees of exposure error and confounding bias, RC-GPS eliminates bias from exposure error and confounding compared to standard approaches that rely on the error-prone exposure. We applied RC-GPS to a rich data platform to estimate the causal effect of long-term exposure to fine particles ($\mathrm{PM}_{2.5}$) on mortality in New England for the period from 2000 to 2012. The main study consists of $2202$ zip codes covered by $217{,}660$ $1\mbox{ km}\times 1\mbox{ km}$ grid cells with yearly mortality rates, yearly $\mathrm{PM}_{2.5}$ averages estimated from a spatio-temporal model (error-prone exposure) and several potential confounders. The internal validation study includes a subset of 83 $1\mbox{ km}\times 1\mbox{ km}$ grid cells within 75 zip codes from the main study with error-free yearly $\mathrm{PM}_{2.5}$ exposures obtained from monitor stations. Under assumptions of noninterference and weak unconfoundedness, using matching we found that exposure to moderate levels of $\mathrm{PM}_{2.5}$ ($8<\mathrm{PM}_{2.5}\leq 10\ \mu\mathrm{g}/\mathrm{m}^{3}$) causes a 2.8% (95% CI: 0.6%, 3.6%) increase in all-cause mortality compared to low exposure ($\mathrm{PM}_{2.5}\leq 8\ \mu\mathrm{g}/\mathrm{m}^{3}$).

Article information

Source
Ann. Appl. Stat., Volume 13, Number 1 (2019), 520-547.

Dates
Received: December 2017
Revised: August 2018
First available in Project Euclid: 10 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1554861659

Digital Object Identifier
doi:10.1214/18-AOAS1206

Mathematical Reviews number (MathSciNet)
MR3937439

Zentralblatt MATH identifier
07057438

Keywords
Measurement error generalized propensity scores observational study air pollution environmental epidemiology causal inference

Citation

Wu, Xiao; Braun, Danielle; Kioumourtzoglou, Marianthi-Anna; Choirat, Christine; Di, Qian; Dominici, Francesca. Causal inference in the context of an error prone exposure: Air pollution and mortality. Ann. Appl. Stat. 13 (2019), no. 1, 520--547. doi:10.1214/18-AOAS1206. https://projecteuclid.org/euclid.aoas/1554861659


Export citation

References

  • Abadie, A. and Imbens, G. W. (2008). On the failure of the bootstrap for matching estimators. Econometrica 76 1537–1557.
  • Abadie, A. and Imbens, G. W. (2016). Matching on the estimated propensity score. Econometrica 84 781–807.
  • Alexeeff, S. E., Carroll, R. J. and Coull, B. (2016). Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures. Biostatistics 17 377–389.
  • Babanezhad, M., Vansteelandt, S. and Goetghebeur, E. (2010). Comparison of causal effect estimators under exposure misclassification. J. Statist. Plann. Inference 140 1306–1319.
  • Baccini, M., Mattei, A., Mealli, F., Bertazzi, P. A. and Carugno, M. (2017). Assessing the short term impact of air pollution on mortality: A matching approach. Environ. Health 16 7.
  • Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr, G., Hoffmann, B., Wolf, K., Samoli, E., Fischer, P. and Nieuwenhuijsen, M. (2014). Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383 785–795.
  • Bickel, P. J., Götze, F. and van Zwet, W. R. (2012). Resampling fewer than n observations: Gains, losses, and remedies for losses. In Selected Works of Willem van Zwet 267–297. Springer, Berlin.
  • Braun, D., Gorfine, M., Parmigiani, G., Arvold, N. D., Dominici, F. and Zigler, C. (2017). Propensity scores with misclassified treatment assignment: A likelihood-based adjustment. Biostatistics 18 695–710.
  • Burton, R. M., Suh, H. H. and Koutrakis, P. (1996). Spatial variation in particulate concentrations within metropolitan Philadelphia. Environ. Sci. Technol. 30 400–407.
  • Carroll, R. J. and Stefanski, L. A. (1990). Approximate quasi-likelihood estimation in models with surrogate predictors. J. Amer. Statist. Assoc. 85 652–663.
  • Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models: A Modern Perspective, 2nd ed. Monographs on Statistics and Applied Probability 105. CRC Press/CRC, Boca Raton, FL.
  • Cox, D. R. (1958). Planning of Experiments. Wiley, New York; CRC Press, London.
  • Crump, R. K., Hotz, V. J., Imbens, G. W. and Mitnik, O. A. (2009). Dealing with limited overlap in estimation of average treatment effects. Biometrika 96 187–199.
  • Dehejia, R. H. and Wahba, S. (1998). Propensity score matching methods for non-experimental casual studies.
  • Dehejia, R. H. and Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. J. Amer. Statist. Assoc. 94 1053–1062.
  • Di, Q., Koutrakis, P. and Schwartz, J. (2016). A hybrid prediction model for $\mathrm{PM}_{2.5}$ mass and components using a chemical transport model and land use regression. Atmos. Environ. 131 390–399.
  • Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y. and Schwartz, J. (2016). Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Technol. 50 4712–4721.
  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr., B. G. and Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. N. Engl. J. Med. 329 1753–1759.
  • Dominici, F., Zeger, S. L. and Samet, J. M. (2000). A measurement error model for time-series studies of air pollution and mortality. Biostatistics 1 157–175.
  • Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. CRC Press, New York.
  • Fuller, W. A. (2009). Measurement Error Models. Wiley Interscience, Hoboken, NJ. Reprint of the 1987 original, Wiley-Interscience Paperback Series.
  • Gail, M. H., Wu, J., Wang, M. et al. (2016). Calibration and seasonal adjustment for matched case-control studies of vitamin D and cancer. Stat. Med. 35 2133–2148.
  • Gryparis, A., Paciorek, C. J., Zeka, A., Schwartz, J. and Coull, B. A. (2009). Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics 10 258–274.
  • Harder, V. S., Stuart, E. A. and Anthony, J. C. (2010). Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. Psychol. Methods 15 234–249.
  • Hart, J. E., Liao, X., Hong, B., Puett, R. C., Yanosky, J. D., Suh, H., Kioumourtzoglou, M.-A., Spiegelman, D. and Laden, F. (2015). The association of long-term exposure to $\mathrm{PM}_{2.5}$ on all-cause mortality in the Nurses’ Health Study and the impact of measurement-error correction. Environ. Health 14 38.
  • Hirano, K., Imbens, G. W. and Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71 1161–1189.
  • Imai, K. and van Dyk, D. A. (2004). Causal inference with general treatment regimes: Generalizing the propensity score. J. Amer. Statist. Assoc. 99 854–866.
  • Imbens, G. W. (2000). The role of the propensity score in estimating dose–response functions. Biometrika 87 706–710.
  • Kioumourtzoglou, M.-A., Spiegelman, D., Szpiro, A. A., Sheppard, L., Kaufman, J. D., Yanosky, J. D., Williams, R., Laden, F., Hong, B. and Suh, H. (2014). Exposure measurement error in $\mathrm{PM}_{2.5}$ health effects studies: A pooled analysis of eight personal exposure validation studies. Environ. Health 13 2.
  • Kioumourtzoglou, M.-A., Schwartz, J., James, P., Dominici, F. and Zanobetti, A. (2016). PM2.5 and mortality in 207 US cities: Modification by temperature and city characteristics. Epidemiology 27 221–227.
  • Lechner, M. (2001). Identification and estimation of causal effects of multiple treatments under the conditional independence assumption. In Econometric Evaluation of Labour Market Policies 43–58. Springer, Berlin.
  • Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Stat. Med. 23 2937–2960.
  • McCaffrey, D. F., Ridgeway, G. and Morral, A. R. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol. Methods 9 403–425.
  • Pierce, D. A. and Kellerer, A. M. (2004). Adjusting for covariate errors with nonparametric assessment of the true covariate distribution. Biometrika 91 863–876.
  • Rassen, J. A., Shelat, A. A., Franklin, J. M., Glynn, R. J., Solomon, D. H. and Schneeweiss, S. (2013). Matching by propensity score in cohort studies with three treatment groups. Epidemiology 24 401–409.
  • Robins, J. M., Hernán, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11 550–560.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. J. Amer. Statist. Assoc. 79 516–524.
  • Rothman, K. J., Greenland, S. and Lash, T. L. (2008). Modern Epidemiology. Lippincott Williams & Wilkins, Philaldelphia, PA.
  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66 688.
  • Rubin, D. B. (1990). Formal mode of statistical inference for causal effects. J. Statist. Plann. Inference 25 279–292.
  • Sarnat, S. E., Klein, M., Sarnat, J. A., Flanders, W. D., Waller, L. A., Mulholland, J. A., Russell, A. G. and Tolbert, P. E. (2010). An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J. Expo. Sci. Environ. Epidemiol. 20 135–146.
  • Shi, L., Zanobetti, A., Kloog, I., Coull, B. A., Koutrakis, P., Melly, S. J. and Schwartz, J. D. (2016). Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 124 46.
  • Szpiro, A. A., Sheppard, L. and Lumley, T. (2011). Efficient measurement error correction with spatially misaligned data. Biostatistics 12 610–623.
  • USEPA (2012). US Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS) table. Available at https://www.epa.gov/criteria-air-pollutants/naaqs-table.
  • Van Roosbroeck, S., Li, R., Hoek, G., Lebret, E., Brunekreef, B. and Spiegelman, D. (2008). Traffic-related outdoor air pollution and respiratory symptoms in children: The impact of adjustment for exposure measurement error. Epidemiology 19 409–416.
  • Vaughn, B. K. (2008). Data analysis using regression and multilevel/hierarchical models, by Gelman, A., & Hill, J. J. Educ. Meas. 45 94–97.
  • Villeneuve, P. J., Weichenthal, S. A., Crouse, D., Miller, A. B., To, T., Martin, R. V., van Donkelaar, A., Wall, C. and Burnett, R. T. (2015). Long-term exposure to fine particulate matter air pollution and mortality among Canadian women. Epidemiology 26 536–545.
  • WHO (2018). World Health Organization. Air quality guidelines. Available at http://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
  • Wilson, W. E. and Suh, H. H. (1997). Fine particles and coarse particles: Concentration relationships relevant to epidemiologic studies. J. Air Waste Manage. Assoc. 47 1238–1249.
  • Wu, X., Braun, D., Kioumourtzoglou, M.-A., Choirat, C., Di, Q. and Dominici, F. (2019). Supplement to “Causal inference in the context of an error prone exposure: Air pollution and mortality.” DOI:10.1214/18-AOAS1206SUPP.
  • Yang, S., Imbens, G. W., Cui, Z., Faries, D. E. and Kadziola, Z. (2016). Propensity score matching and subclassification in observational studies with multi-level treatments. Biometrics 72 1055–1065.

Supplemental materials

  • Supplement to “Causal inference in the context of an error prone exposure: Air pollution and mortality”. We provided supplementary figures, tables and text that show results from additional simulation scenarios and more details of the data application. R code for simulations is available at https://github.com/wxwx1993/RC-GPS.