The Annals of Applied Statistics

Bayesian semiparametric joint regression analysis of recurrent adverse events and survival in esophageal cancer patients

Juhee Lee, Peter F. Thall, and Steven H. Lin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We propose a Bayesian semiparametric joint regression model for a recurrent event process and survival time. Assuming independent latent subject frailties, we define marginal models for the recurrent event process intensity and survival distribution as functions of the subject’s frailty and baseline covariates. A robust Bayesian model, called Joint-DP, is obtained by assuming a Dirichlet process for the frailty distribution. We present a simulation study that compares posterior estimates under the Joint-DP model to a Bayesian joint model with lognormal frailties, a frequentist joint model, and marginal models for either the recurrent event process or survival time. The simulations show that the Joint-DP model does a good job of correcting for treatment assignment bias, and has favorable estimation reliability and accuracy compared with the alternative models. The Joint-DP model is applied to analyze an observational dataset from esophageal cancer patients treated with chemo-radiation, including the times of recurrent effusions of fluid to the heart or lungs, survival time, prognostic covariates, and radiation therapy modality.

Article information

Ann. Appl. Stat., Volume 13, Number 1 (2019), 221-247.

Received: May 2017
Revised: March 2018
First available in Project Euclid: 10 April 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Accelerated failure time Bayesian nonparametrics chemoradiation Dirichlet process esophageal cancer joint model nonhomogeneous point process


Lee, Juhee; Thall, Peter F.; Lin, Steven H. Bayesian semiparametric joint regression analysis of recurrent adverse events and survival in esophageal cancer patients. Ann. Appl. Stat. 13 (2019), no. 1, 221--247. doi:10.1214/18-AOAS1182.

Export citation


  • Austin, P. C. (2013). The performance of different propensity score methods for estimating marginal hazard ratios. Stat. Med. 32 2837–2849.
  • Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61 962–972.
  • Brown, E. R. and Ibrahim, J. G. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59 221–228.
  • Bush, C. A. and MacEachern, S. N. (1996). A semiparametric Bayesian model for randomised block designs. Biometrika 83 275–285.
  • Chapple, A. G., Vannucci, M., Thall, P. F. and Lin, S. (2017). Bayesian variable selection for a semi-competing risks model with three hazard functions. Comput. Statist. Data Anal. 112 170–185.
  • Chuong, M. D., Hallemeier, C. L., Jabbour, S. K., Yu, J., Badiyan, S., Merrell, K. W., Mishra, M. V., Li, H., Verma, V. and Lin, S. H. (2016). Improving outcomes for esophageal cancer using proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 95 488–497.
  • Cook, R. J. and Lawless, J. F. (2002). Analysis of repeated events. Stat. Methods Med. Res. 11 141–166.
  • Cox, D. R. (1955). Some statistical methods connected with series of events. J. Roy. Statist. Soc. Ser. B 17 129–157; discussion, 157–164.
  • De Gruttola, V. and Tu, X. M. (1994). Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50 1003–1014.
  • Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577–588.
  • Faucett, C. L. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Stat. Med. 15 1663–1685.
  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.
  • Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G., eds. (2009). Longitudinal Data Analysis. CRC Press, Boca Raton, FL.
  • Geisser, S. (1993). Predictive Inference: An Introduction. Monographs on Statistics and Applied Probability 55. Chapman & Hall, New York.
  • Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. J. Roy. Statist. Soc. Ser. B 56 501–514.
  • Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. Technical report, Dept. Statistics, Stanford Univ., Stanford, CA.
  • Ghosh, S. K. and Ghosal, S. (2006). Semiparametric accelerated failure time models for censored data. Bayesian Stat. Appl. 15 213–229.
  • Ghosh, D. and Lin, D. Y. (2000). Nonparametric analysis of recurrent events and death. Biometrics 56 554–562.
  • Grandell, J. (1976). Doubly Stochastic Poisson Processes. Lecture Notes in Mathematics 529. Springer, Berlin.
  • Guida, M., Calabria, R. and Pulcini, G. (1989). Bayes inference for a non-homogeneous Poisson process with power intensity law [reliability]. IEEE Trans. Reliab. 38 603–609.
  • Hatfield, L. A., Boye, M. E. and Carlin, B. P. (2011). Joint modeling of multiple longitudinal patient-reported outcomes and survival. J. Biopharm. Statist. 21 971–991.
  • Hatfield, L. A., Hodges, J. S. and Carlin, B. P. (2014). Joint models: When are treatment estimates improved? Stat. Interface 7 439–453.
  • He, L., Chapple, A., Liao, Z., Komaki, R., Thall, P. F. and Lin, S. H. (2016). Bayesian regression analyses of radiation modality effects on pericardial and pleural effusion and survival in esophageal cancer. Radiother. Oncol. 121 70–74.
  • Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1 465–480.
  • Huang, C.-Y. and Wang, M.-C. (2004). Joint modeling and estimation for recurrent event processes and failure time data. J. Amer. Statist. Assoc. 99 1153–1165.
  • Jara, A., Hanson, T., Quintana, F., Mueller, P. and Rosner, G. (2018). Package ‘DPpackage.’
  • Ji, W., Zheng, W., Li, B., Cao, C. and Mao, W. (2016). Influence of body mass index on the long-term outcomes of patients with esophageal squamous cell carcinoma who underwent esophagectomy as a primary treatment: A 10-year medical experience. Medicine 95 e4204.
  • Kalbfleisch, J. D., Schaubel, D. E., Ye, Y. and Gong, Q. (2013). An estimating function approach to the analysis of recurrent and terminal events. Biometrics 69 366–374.
  • Kuo, L. and Yang, T. Y. (1996). Bayesian computation for nonhomogeneous Poisson processes in software reliability. J. Amer. Statist. Assoc. 91 763–773.
  • Lawless, J. F. (1987). Regression methods for Poisson process data. J. Amer. Statist. Assoc. 82 808–815.
  • Lee, J., Thall, P. F. and Lin, S. H. (2019). Supplement to “Bayesian semiparametric joint regression analysis of recurrent adverse events and survival in esophageal cancer patients.” DOI:10.1214/18-AOAS1182SUPP.
  • Lee, K. H., Haneuse, S., Schrag, D. and Dominici, F. (2015). Bayesian semiparametric analysis of semicompeting risks data: Investigating hospital readmission after a pancreatic cancer diagnosis. J. R. Stat. Soc. Ser. C. Appl. Stat. 64 253–273.
  • Lee, K. H., Dominici, F., Schrag, D. and Haneuse, S. (2016). Hierarchical models for semicompeting risks data with application to quality of end-of-life care for pancreatic cancer. J. Amer. Statist. Assoc. 111 1075–1095.
  • Li, Y., Müller, P. and Lin, X. (2011). Center-adjusted inference for a nonparametric Bayesian random effect distribution. Statist. Sinica 21 1201–1223.
  • Lin, S. H., Wang, L., Myles, B., Thall, P. F., Hofstetter, W. L., Swisher, S. G., Ajani, J. A., Cox, J. D., Komaki, R. and Liao, Z. (2012). Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int. J. Radiat. Oncol. Biol. Phys. 84 1078–1085.
  • Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. J. R. Stat. Soc. Ser. C. Appl. Stat. 58 65–81.
  • Liu, L., Wolfe, R. A. and Huang, X. (2004). Shared frailty models for recurrent events and a terminal event. Biometrics 60 747–756.
  • MacEachern, S. N. and Müller, P. (1998). Estimating mixture of Dirichlet process models. J. Comput. Graph. Statist. 7 223–238.
  • Millar, R. B. (2009). Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes’ factors. Biometrics 65 962–969.
  • Müller, P. and Rodriguez, A. (2013). Nonparametric Bayesian Inference. NSF-CBMS Regional Conference Series in Probability and Statistics 9. IMS, Beachwood, OH.
  • Ouyang, B., Sinha, D., Slate, E. H. and Van Bakel, A. B. (2013). Bayesian analysis of recurrent event with dependent termination: An application to a heart transplant study. Stat. Med. 32 2629–2642.
  • Robert, C. P. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, 2nd ed. Springer, New York.
  • Robins, J. M., Hernan, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11 550–560.
  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650.
  • Sinha, D., Maiti, T., Ibrahim, J. G. and Ouyang, B. (2008). Current methods for recurrent events data with dependent termination: A Bayesian perspective. J. Amer. Statist. Assoc. 103 866–878.
  • Song, X., Davidian, M. and Tsiatis, A. A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58 742–753.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 583–639.
  • Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J. and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65 87–108.
  • Walker, S. and Mallick, B. K. (1999). A Bayesian semiparametric accelerated failure time model. Biometrics 55 477–483.
  • Wen, S., Huang, X., Frankowski, R. F., Cormier, J. N. and Pisters, P. (2016). A Bayesian multivariate joint frailty model for disease recurrences and survival. Stat. Med. 35 4794–4812.
  • Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53 330–339.
  • Xu, Y., Müller, P., Wahed, A. S. and Thall, P. F. (2016). Bayesian nonparametric estimation for dynamic treatment regimes with sequential transition times. J. Amer. Statist. Assoc. 111 921–950.
  • Xu, G., Chiou, S. H., Huang, C.-Y., Wang, M.-C. and Yan, J. (2017). Joint scale-change models for recurrent events and failure time. J. Amer. Statist. Assoc. 112 794–805.
  • Ye, W., Lin, X. and Taylor, J. M. G. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data—a two-stage regression calibration approach. Biometrics 64 1238–1246.
  • Zhang, S. S., Yang, H., Luo, K. J., Huang, Q. Y., Chen, J. Y., Yang, F., Cai, X. L., Xie, X., Liu, Q. W., Bella, A. E. et al. (2013). The impact of body mass index on complication and survival in resected oesophageal cancer: A clinical-based cohort and meta-analysis. Br. J. Cancer 109 2894–2903.

Supplemental materials

  • Supplement to “Bayesian semiparametric joint regression analysis of recurrent adverse events and survival in esophageal cancer patients”. Joint Bayesian semiparametric regression analysis of recurrent adverse events and survival in esophageal cancer patients are available under the paper information link at the Journal website.