The Annals of Applied Statistics

Spatial capture–recapture with partial identity: An application to camera traps

Ben C. Augustine, J. Andrew Royle, Marcella J. Kelly, Christopher B. Satter, Robert S. Alonso, Erin E. Boydston, and Kevin R. Crooks

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Camera trapping surveys frequently capture individuals whose identity is only known from a single flank. The most widely used methods for incorporating these partial identity individuals into density analyses discard some of the partial identity capture histories, reducing precision, and, while not previously recognized, introducing bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial location where partial identity samples are captured to probabilistically resolve their complete identities, allowing all partial identity samples to be used in the analysis. We show that the SPIM outperforms other analytical alternatives. We then apply the SPIM to an ocelot data set collected on a trapping array with double-camera stations and a bobcat data set collected on a trapping array with single-camera stations. The SPIM improves inference in both cases and, in the ocelot example, individual sex is determined from photographs used to further resolve partial identities—one of which is resolved to near certainty. The SPIM opens the door for the investigation of trapping designs that deviate from the standard two camera design, the combination of other data types between which identities cannot be deterministically linked, and can be extended to the problem of partial genotypes.

Article information

Ann. Appl. Stat., Volume 12, Number 1 (2018), 67-95.

Received: June 2017
Revised: August 2017
First available in Project Euclid: 9 March 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Spatial capture–recapture partial identity camera trapping multiple marks


Augustine, Ben C.; Royle, J. Andrew; Kelly, Marcella J.; Satter, Christopher B.; Alonso, Robert S.; Boydston, Erin E.; Crooks, Kevin R. Spatial capture–recapture with partial identity: An application to camera traps. Ann. Appl. Stat. 12 (2018), no. 1, 67--95. doi:10.1214/17-AOAS1091.

Export citation


  • Alonso, R. S., McClintock, B. T., Lyren, L. M., Boydston, E. E. and Crooks, K. R. (2015). Mark–recapture and Mark–resight methods for estimating abundance with remote cameras: A carnivore case study. PLoS ONE 10 e0123032.
  • Augustine, B. C., Royle, J. A., Kelly, M. J., Satter, C. B., Alonso, R. S., Boydston, E. E. and Crooks, K. R. (2018a). Supplement to “Spatial capture–recapture with partial identity: An application to camera traps.” DOI:10.1214/17-AOAS1091SUPPA.
  • Augustine, B. C., Royle, J. A., Kelly, M. J., Satter, C. B., Alonso, R. S., Boydston, E. E. and Crooks, K. R. (2018b). Supplement to “Spatial capture–recapture with partial identity: An application to camera traps.” DOI:10.1214/17-AOAS1091SUPPB.
  • Bonner, S. J. and Holmberg, J. (2013). mark–recapture with multiple, non-invasive marks. Biometrics 69 766–775.
  • Borchers, D. L. and Efford, M. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64 377–385.
  • Chandler, R. B. and Clark, J. D. (2014). Spatially explicit integrated population models. Methods Ecol. Evol. 5 1351–1360.
  • Chandler, R. B. and Royle, J. A. (2013). Spatially explicit models for inference about density in unmarked or partially marked populations. Ann. Appl. Stat. 7 936–954.
  • Eddelbuettel, D. and François, R. (2011). Rcpp: Seamless R and C${+}+$ integration. J. Stat. Softw. 40 1–18.
  • Eddelbuettel, D. and Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-performance C${+}+$ linear algebra. Comput. Statist. Data Anal. 71 1054–1063.
  • Fewster, R. M., Stevenson, B. C. and Borchers, D. L. (2016). Trace-contrast models for capture–recapture without capture histories. Statist. Sci. 31 245–258.
  • Kalle, R., Ramesh, T., Qureshi, Q. and Sankar, K. (2011). Density of tiger and leopard in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, as estimated using photographic capture–recapture sampling. Acta Theriol. 56 335–342.
  • Kelly, M. J., Betsch, J., Wultsch, C., Mesa, B. and Mills, L. S. (2012). Noninvasive sampling for carnivores. In Carnivore Ecology and Conservation: A Handbook of Techniques (L. Boitani and R. A. Powell, eds.) 47–69. Oxford Univ. Press, New York.
  • King, R., McClintock, B. T., Kidney, D. and Borchers, D. (2016). Capture–recapture abundance estimation using a semi-complete data likelihood approach. Ann. Appl. Stat. 10 264–285.
  • Link, W. A., Yoshizaki, J., Bailey, L. L. and Pollock, K. H. (2010). Uncovering a latent multinomial: Analysis of mark–recapture data with misidentification. Biometrics 66 178–185.
  • McClintock, B. T. (2015). Multimark: An R package for analysis of capture–recapture data consisting of multiple “noninvasive” marks. Ecol. Evol. 5 4920–4931.
  • McClintock, B. T., Conn, P. B., Alonso, R. S. and Crooks, K. R. (2013). Integrated modeling of bilateral photo-identification data in mark–recapture analyses. Ecology 94 1464–1471.
  • Nair, T., Thorbjarnarson, J. B., Aust, P. and Krishnaswamy, J. (2012). Rigorous gharial population estimation in the Chambal: Implications for conservation and management of a globally threatened crocodilian. J. Appl. Ecol. 49 1046–1054.
  • Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs 62 3–135.
  • Reich, B. J. and Gardner, B. (2014). A spatial capture–recapture model for territorial species. Environmetrics 25 630–637.
  • Royle, J. A. (2009). Analysis of capture–recapture models with individual covariates using data augmentation. Biometrics 65 267–274.
  • Royle, J. A., Dorazio, R. M. and Link, W. A. (2007). Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Statist. 16 67–85.
  • Royle, J. A., Fuller, A. K. and Sutherland, C. (2016). Spatial capture–recapture models allowing Markovian transience or dispersal. Population Ecology 58 53–62.
  • Royle, J. A., Chandler, R. B., Sollmann, R. and Gardner, B. (2013). Spatial Capture–Recapture. Academic Press, San Diego.
  • Sollmann, R., Gardner, B., Parsons, A. W., Stocking, J. J., McClintock, B. T., Simons, T. R., Pollock, K. H. and O’Connell, A. F. (2013a). A spatial Mark–resight model augmented with telemetry data. Ecology 94 553–559.
  • Sollmann, R., Tôrres, N. M., Furtado, M. M., de Almeida Jácomo, A. T., Palomares, F., Roques, S. and Silveira, L. (2013b). Combining camera-trapping and noninvasive genetic data in a spatial capture–recapture framework improves density estimates for the jaguar. Biological Conservation 167 242–247.
  • Srivathsa, A., Parameshwaran, R., Sharma, S. and Karanth, K. U. (2015). Estimating population sizes of leopard cats in the Western Ghats using camera surveys. J. Mammal. 96 742–750.
  • Sun, C. C., Fuller, A. K. and Royle, J. A. (2014). Trap configuration and spacing influences parameter estimates in spatial capture–recapture models. PLoS ONE 9 e88025.
  • Wang, S. W. and Macdonald, D. W. (2009). The use of camera traps for estimating tiger and leopard populations in the high altitude mountains of Bhutan. Biological Conservation 142 606–613.
  • Wilson, B., Hammond, P. S. and Thompson, P. M. (1999). Estimating size and assessing trends in a coastal bottlenose dolphin population. Ecol. Appl. 9 288–300.
  • Wimmer, J., Towsey, M., Roe, P. and Williamson, I. (2013). Sampling environmental acoustic recordings to determine bird species richness. Ecol. Appl. 23 1419–1428.
  • Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. and Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark–recapture-type models for estimating abundance using DNA samples. Biometrics 65 833–840.
  • Wultsch, C., Waits, L. P. and Kelly, M. J. (2014). Noninvasive individual and species identification of jaguars (Panthera onca), pumas (Puma concolor) and ocelots (Leopardus pardalis) in Belize, Central America using cross-species microsatellites and faecal DNA. Mol. Ecol. Res. 14 1171–1182.

Supplemental materials

  • Supplement A: Simulation tables for Appendix B. We provide a table containing the full simulation results that are graphically summarized in Appendix B.
  • Supplement B: Comparison of spatial partial identity model to the non-spatial partial identity model. We provide a comparison of the spatial partial identity model to it’s non-spatial counterpart via simulation studies.