The Annals of Applied Statistics

Modeling $\mathrm{CD4}^{+}$ T cells dynamics in HIV-infected patients receiving repeated cycles of exogenous Interleukin 7

Ana Jarne, Daniel Commenges, Laura Villain, Mélanie Prague, Yves Lévy, and Rodolphe Thiébaut

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Combination antiretroviral therapy successfully controls viral replication in most HIV infected patients. This is normally followed by a reconstitution of the $\mathrm{CD4}^{+}$ T cells pool, but not for all patients. For these patients, an immunotherapy based on injections of Interleukin 7 (IL-7) has been recently proposed in the hope of obtaining long-term reconstitution of the T cells pool. Several questions arise as to the long-term efficiency of this treatment and the best protocol to apply. Mathematical and statistical models can help answer these questions.

We developed a model based on a system of ordinary differential equations and a statistical model of variability and measurement. We can estimate key parameters of this model using the data from the main studies for this treatment, the INSPIRE, INSPIRE 2, and INSPIRE 3 trials. In all three studies, cycles of three injections have been administered; in the last two studies, for the first time, repeated cycles of IL-7 have been administered. Repeated measures of total $\mathrm{CD4}^{+}$ T cells count in 128 patients, as well as $\mathrm{CD4}^{+}\mbox{Ki67}^{+}$ T cells count (the number of cells expressing the proliferation marker Ki67) in some of them, were available. Our aim was to estimate the possibly different effects of successive injections in a cycle, to estimate the effect of repeated cycles and to assess different protocols.

The use of dynamical models together with our complex statistical approach allow us to analyze major biological questions. We found a strong effect of IL-7 injections on the proliferation rate; however, the effect of the third injection of the cycle appears to be much weaker than the first ones. Also, despite a slightly weaker effect of repeated cycles with respect to the initial one, our simulations show the ability of this treatment of maintaining adequate $\mathrm{CD4}^{+}$ T cells count for years. We also compared different protocols, showing that cycles of two injections should be sufficient in most cases.

Article information

Ann. Appl. Stat., Volume 11, Number 3 (2017), 1593-1616.

Received: November 2016
First available in Project Euclid: 5 October 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Mechanistic models Interleukin 7 HIV modeling CD4


Jarne, Ana; Commenges, Daniel; Villain, Laura; Prague, Mélanie; Lévy, Yves; Thiébaut, Rodolphe. Modeling $\mathrm{CD4}^{+}$ T cells dynamics in HIV-infected patients receiving repeated cycles of exogenous Interleukin 7. Ann. Appl. Stat. 11 (2017), no. 3, 1593--1616. doi:10.1214/17-AOAS1047.

Export citation


  • Commenges, D., Jacqmin-Gadda, H., Proust, C. and Guedj, J. (2006). A Newton-like algorithm for likelihood maximization: The robust-variance scoring algorithm. Preprint, arXiv:math/0610402.
  • Commenges, D., Joly, P., Gégout-Petit, A. and Liquet, B. (2007). Choice between semi-parametric estimators of Markov and non-Markov multi-state models from coarsened observations. Scand. J. Stat. 34 33–52.
  • Commenges, D., Sayyareh, A., Letenneur, L., Guedj, J. and Bar-Hen, A. (2008). Estimating a difference of Kullback–Leibler risks using a normalized difference of AIC. Ann. Appl. Stat. 2 1123–1142.
  • Commenges, D., Proust-Lima, C., Samieri, C. and Liquet, B. (2015). A universal approximate cross-validation criterion for regular risk functions. Int. J. Biostat. 11 51–67.
  • Drylewicz, J., Commenges, D. and Thiebaut, R. (2012). Maximum a posteriori estimation in dynamical models of primary HIV infection. Stat. Commun. Infec. Dis. 4 Art. 2, 36.
  • Finkenstädt, B., Woodcock, D. J., Komorowski, M., Harper, C. V., Davis, J. R. E., White, M. R. H. and Rand, D. A. (2013). Quantifying intrinsic and extrinsic noise in gene transcription using the linear noise approximation: An application to single cell data. Ann. Appl. Stat. 7 1960–1982.
  • Fry, T. J. and Mackall, C. L. (2002). Interleukin-7: From bench to clinic. Blood 99 3892–3904.
  • Genz, A. and Keister, B. D. (1996). Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71 299–309.
  • Guedj, J., Thiébaut, R. and Commenges, D. (2007a). Maximum likelihood estimation in dynamical models of HIV. Biometrics 63 1198–1206, 1314.
  • Guedj, J., Thiébaut, R. and Commenges, D. (2007b). Practical identifiability of HIV dynamics models. Bull. Math. Biol. 69 2493–2513.
  • Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., Markowitz, M. et al. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373 123–126.
  • Huang, Y., Liu, D. and Wu, H. (2006). Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics 62 413–423.
  • Kondrack, R. M., Harbertson, J., Tan, J. T., McBreen, M. E., Surh, C. D. and Bradley, L. M. (2003). Interleukin 7 regulates the survival and generation of memory CD4 cells. J. Exp. Med. 198 1797–1806.
  • Konishi, S. and Kitagawa, G. (2008). Information Criteria and Statistical Modeling. Springer, New York.
  • Kuhn, E. and Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Comput. Statist. Data Anal. 49 1020–1038.
  • Levy, Y., Lacabaratz, C., Weiss, L., Viard, J.-P., Goujard, C., Lelièvre, J.-D., Boué, F., Molina, J.-M., Rouzioux, C., Avettand-Fénoêl, V. et al. (2009). Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J. Clin. Invest. 119 997.
  • Levy, Y., Sereti, I., Tambussi, G., Routy, J., Lelievre, J., Delfraissy, J., Molina, J., Fischl, M., Goujard, C., Rodriguez, B. et al. (2012). Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: Results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin. Infect. Dis. 55 291–300.
  • Mackall, C. L., Fry, T. J. and Gress, R. E. (2011). Harnessing the biology of IL-7 for therapeutic application. Nat. Rev., Immunol. 11 330–342.
  • Mackall, C. L., Fry, T. J., Bare, C., Morgan, P., Galbraith, A. and Gress, R. E. (2001). IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97 1491–1497.
  • Namen, A., Schmierer, A., March, C., Overell, R., Park, L., Urdal, D. and Mochizuki, D. (1988). B cell precursor growth-promoting activity. Purification and characterization of a growth factor active on lymphocyte precursors. J. Exp. Med. 167 988–1002.
  • Okamoto, Y., Douek, D. C., McFarland, R. D. and Koup, R. A. (2002). Effects of exogenous interleukin-7 on human thymus function. Blood 99 2851–2858.
  • Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. and Ho, D. D. (1996). HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271 1582–1586.
  • Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer, New York.
  • Post, T. M., Freijer, J. I., Ploeger, B. A. and Danhof, M. (2008). Extensions to the visual predictive check to facilitate model performance evaluation. J. Pharmacokinet. Pharmacodyn. 35 185–202.
  • Prague, M., Commenges, D., Drylewicz, J. and Thiébaut, R. (2012). Treatment monitoring of HIV-infected patients based on mechanistic models. Biometrics 68 902–911.
  • Prague, M., Commenges, D., Guedj, J., Drylewicz, J. and Thiébaut, R. (2013). NIMROD: A program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations. Comput. Methods Programs Biomed. 111 447–458.
  • Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 741–796.
  • Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319–392.
  • Seddon, B., Tomlinson, P. and Zamoyska, R. (2003). Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol. 4 680–686.
  • Sereti, I., Dunham, R. M., Spritzler, J., Aga, E., Proschan, M. A., Medvik, K., Battaglia, C. A., Landay, A. L., Pahwa, S., Fischl, M. A. et al. (2009). IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 113 6304–6314.
  • Sportès, C., Hakim, F. T., Memon, S. A., Zhang, H., Chua, K. S., Brown, M. R., Fleisher, T. A., Krumlauf, M. C., Babb, R. R., Chow, C. K. et al. (2008). Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. 205 1701–1714.
  • Thiébaut, R., Jacqmin-Gadda, H., Leport, C., Katlama, C., Costagliola, D., Le Moing, V., Morlat, P., Chêne, G., Group, A. S. et al. (2003). Bivariate longitudinal model for the analysis of the evolution of HIV RNA and CD4 cell count in HIV infection taking into account left censoring of HIV RNA measures. J. Biopharm. Statist. 13 271–282.
  • Thiébaut, R., Drylewicz, J., Prague, M., Lacabaratz, C., Beq, S., Jarne, A., Croughs, T., Sekaly, R.-P., Lederman, M. M., Sereti, I. et al. (2014). Quantifying and predicting the effect of exogenous Interleukin-7 on CD4$+$ T cells in HIV-1 infection. PLoS Comput. Biol. 10 e1003630.
  • Thiébaut, R., Jarne, A., Routy, J.-P., Sereti, I., Fischl, M., Ive, P., Speck, R. et al. (2016). Repeated cycles of recombinant human interleukin 7 in HIV-infected patients with low CD4 T cell reconstitution on antiretroviral therapy: Results of two phase II multicenter studies. Clin. Infect. Dis. 62 1178–1185.
  • van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge.
  • Vieira, M., Soares, D., Borthwick, N. J., Maini, M. K., Janossy, G., Salmon, M. and Akbar, A. N. (1998). IL-7-dependent extrathymic expansion of CD45RA$+$ T cells enables preservation of a naive repertoire. J. Immunol. 161 5909–5917.
  • Wang, L., Cao, J., Ramsay, J. O., Burger, D. M., Laporte, C. J. L. and Rockstroh, J. K. (2014). Estimating mixed-effects differential equation models. Stat. Comput. 24 111–121.