The Annals of Applied Statistics

Assessing differences in legislators’ revealed preferences: A case study on the 107th U.S. Senate

Chelsea L. Lofland, Abel Rodríguez, and Scott Moser

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Roll call data are widely used to assess legislators’ preferences and ideology, as well as test theories of legislative behavior. In particular, roll call data is often used to determine whether the revealed preferences of legislators are affected by outside forces such as party pressure, minority status or procedural rules. This paper describes a Bayesian hierarchical model that extends existing spatial voting models to test sharp hypotheses about differences in preferences using posterior probabilities associated with such hypotheses. We use our model to investigate the effect of the change of party majority status during the 107th U.S. Senate on the revealed preferences of senators. This analysis provides evidence that change in party affiliation might affect the revealed preferences of legislators, but provides no evidence about the effect of majority status on the revealed preferences of legislators.

Article information

Ann. Appl. Stat., Volume 11, Number 1 (2017), 456-479.

Received: February 2015
Revised: May 2016
First available in Project Euclid: 8 April 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Spatial voting model hypothesis testing spike-and-slab prior revealed preferences factor analysis


Lofland, Chelsea L.; Rodríguez, Abel; Moser, Scott. Assessing differences in legislators’ revealed preferences: A case study on the 107th U.S. Senate. Ann. Appl. Stat. 11 (2017), no. 1, 456--479. doi:10.1214/16-AOAS951.

Export citation


  • Abdi, H. (2007). Bonferroni and Šidák corrections for multiple comparisons. In Encyclopedia of Measurement and Statistics (N. J. Salkind, ed.) 103–107. Sage, Thousand Oaks, CA.
  • Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669–679.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57 289–300.
  • Carroll, R., Lewis, J. B., Lo, J., Poole, K. T. and Rosenthal, H. (2009). Measuring bias and uncertainty in DW-NOMINATE ideal point estimates via the parametric bootstrap. Polit. Anal. 17 261–275.
  • Carson, J. L., Crespin, M. H., Jenkins, J. A. and Vander Wielen, R. J. (2004). Shirking in the contemporary Congress: A reappraisal. Polit. Anal. 12 176–179.
  • Clausen, A. R. and Wilcox, C. (1987). Policy partisanship in legislative leadership recruitment and behavior. Legis. Stud. Q. 12 243–263.
  • Clinton, J., Jackman, S. and Rivers, D. (2004). The statistical analysis of roll call data. Am. Polit. Sci. Rev. 98 355–370.
  • Converse, P. E. (1964). The Nature of Belief Systems in Mass Publics. Free Press, New York.
  • Enelow, J. M. and Hinich, M. J. (1984). The Spatial Theory of Voting: An Introduction. Cambridge Univ. Press, Cambridge, MA.
  • Fox, J.-P. (2010). Bayesian Item Response Modeling. Theory and Applications. Springer, New York.
  • Gelman, A. and Rubin, D. B. (1992). Inferences from iterative simulation using multiple sequences. Statist. Sci. 7 457–472.
  • Ghosh, J. and Dunson, D. B. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. J. Comput. Graph. Statist. 18 306–320.
  • Hahn, P. R., Carvalho, C. M. and Scott, J. G. (2012). A sparse factor analytic probit model for congressional voting patterns. J. R. Stat. Soc. Ser. C. Appl. Stat. 61 619–635.
  • Jackman, S. (2001). Multidimensional analysis of roll call data via Bayesian simulation: Identification, estimation, inference, and model checking. Polit. Anal. 9 227–241.
  • Jenkins, J. A. (2000). Examining the robustness of ideological voting: Evidence from the confederate house of representatives. Amer. J. Polit. Sci. 44 811–822.
  • Jessee, S. A. (2012). Ideology and Spatial Voting in American Elections. Cambridge Univ. Press, Cambridge, MA.
  • Jessee, S. A. and Theriault, S. M. (2014). The two faces of congressional roll-call voting. Party Polit. 20 836–848.
  • Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773–795.
  • Lewis, J. B. and Poole, K. T. (2004). Measuring bias and uncertainty in ideal point estimates via the parametric bootstrap. Polit. Anal. 12 105–127.
  • Liu, C., Rubin, D. B. and Wu, Y. N. (1998). Parameter expansion to accelerate EM: The PX–EM algorithm. Biometrika 85 755–770.
  • Lofland, C. L., Rodríguez, A. and Moser, S. (2017). Supplement to “Assessing differences in legislators’ revealed preferences: A case study on the 107th U.S. Senate.” DOI:10.1214/16-AOAS951SUPP.
  • Martin, A. D. and Quinn, K. M. (2002). Dynamic ideal point estimation via Markov chain Monte Carlo for the US Supreme Court, 1953–1999. Polit. Anal. 10 134–153.
  • May, J. D. (1973). Opinion structure of political parties: The special law of curvilinear disparity. Polit. Stud. 21 135–151.
  • McCarty, N., Poole, K. T. and Rosenthal, H. (2006). Polarized America: The Dance of Ideology and Unequal Riches. MIT Press, Cambridge, MA.
  • Merrill, S., Grofman, B., Brunell, T. and Koetzle, W. (1999). The power of ideologically concentrated minorities. J. Theor. Polit. 11 57–74.
  • Nokken, T. P. (2000). Dynamics of congressional loyalty: Party defection and roll-call behavior, 1947–97. Legis. Stud. Q. 25 417–444.
  • Nokken, T. P. and Poole, K. T. (2004). Congressional party defection in American history. Legis. Stud. Q. 29 545–568.
  • Polson, N. G., Scott, J. G. and Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. J. Amer. Statist. Assoc. 108 1339–1349.
  • Poole, K. T. and Rosenthal, H. (1984). The polarization of American politics. J. Polit. 46 1061–1079.
  • Poole, K. T. and Rosenthal, H. (1985). A spatial model for legislative roll call analysis. Amer. J. Polit. Sci. 29 357–384.
  • Poole, K. T. and Rosenthal, H. (1987). Analysis of congressional coalition patterns: A unidimensional spatial model. Legis. Stud. Q. 12(1) 55–75.
  • Poole, K. T. and Rosenthal, H. (1991). Patterns of congressional voting. Amer. J. Polit. Sci. 35(1) 228–278.
  • Poole, K. and Rosenthal, H. (1997). Congress: A Political-Economic History of Roll-Call Voting. Oxford Univ. Press, Oxford.
  • Richter, M. K. (1966). Revealed preference theory. Econometrica 34 635–645.
  • Rivers, D. (2003). Identification of multidimensional item-response models. Technical report, Dept. Political Science, Stanford Univ., Stanford, CA.
  • Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, 2nd ed. Springer, New York.
  • Roberts, J. M. (2007). The statistical analysis of roll-call data: A cautionary tale. Legis. Stud. Q. 32 341–360.
  • Rodríguez, A. and Moser, S. (2015). Measuring and accounting for strategic abstentions in the US Senate, 1989–2012. J. R. Stat. Soc. Ser. C. Appl. Stat. 64 779–797.
  • Rosenthal, H. and Voeten, E. (2004). Analyzing roll calls with perfect spatial voting: France 1946–1958. Amer. J. Polit. Sci. 48 620–632.
  • Rothenberg, L. S. and Sanders, M. S. (2000). Severing the electoral connection: Shirking in the contemporary Congress. Amer. J. Polit. Sci. 316–325.
  • Scott, J. G. and Berger, J. O. (2006). An exploration of aspects of Bayesian multiple testing. J. Statist. Plann. Inference 136 2144–2162.
  • Scott, J. G. and Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Statist. 38 2587–2619.
  • Shor, B., Berry, C. and McCarty, N. (2010). A bridge to somewhere: Mapping state and congressional ideology on a cross-institutional common space. Legis. Stud. Q. 35 417–448.
  • Shor, B. and McCarty, N. (2011). The ideological mapping of American legislatures. Am. Polit. Sci. Rev. 105 530–551.
  • Snyder Jr., J. M. and Groseclose, T. (2000). Estimating party influence in congressional roll-call voting. Amer. J. Polit. Sci. 44 193–211.
  • Varian, H. R. (2006). Revealed preference. In Samuelsonian Economics and the Twenty-First Century (M. Szenberg, L. Ramrattan and A. A. Gottesman, eds.) 99–115. Oxford Univ. Press, Oxford.

Supplemental materials

  • Supplement: Algorithm details and additional simulations. The supplementary materials present a detailed description of the full conditional distributions associated with the Markov chain Monte Carlo algorithms used to fit the models described in the paper, as well as a brief discussion of a set of simulations to investigate the performance of the model when legislators exhibit different preferences across both sets of bills.