The Annals of Applied Statistics

Dynamic social networks based on movement

Henry R. Scharf, Mevin B. Hooten, Bailey K. Fosdick, Devin S. Johnson, Josh M. London, and John W. Durban

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.

Article information

Ann. Appl. Stat., Volume 10, Number 4 (2016), 2182-2202.

Received: January 2016
Revised: August 2016
First available in Project Euclid: 5 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Dynamic social network animal movement Orcinus orca hidden Markov model Gaussian Markov random field


Scharf, Henry R.; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Josh M.; Durban, John W. Dynamic social networks based on movement. Ann. Appl. Stat. 10 (2016), no. 4, 2182--2202. doi:10.1214/16-AOAS970.

Export citation


  • Andrews, R. D., Pitman, R. L. and Ballance, L. T. (2008). Satellite tracking reveals distinct movement patterns for type B and type C killer whales in the southern Ross sea, Antarctica. Polar Biol. 31 1461–1468.
  • Baird, R. W. and Whitehead, H. (2000). Social organization of mammal-eating killer whales: Group stability and dispersal patterns. Can. J. Zool. 78 2096–2105.
  • Berliner, L. M. (1996). Hierarchical Bayesian time series models. In Maximum Entropy and Bayesian Methods (Santa Fe, NM, 1995) (K. M. Hanson and R. N. Silver, eds.). Fund. Theories Phys. 79 15–22. Kluwer Academic, Dordrecht.
  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B 36 192–236.
  • Besag, J. and Kooperberg, C. (1995). On conditional and intrinsic autoregressions. Biometrika 82 733–746.
  • Brillinger, D. R. and Stewart, B. S. (1998). Elephant-seal movements: Modelling migration. Canad. J. Statist. 26 431–443.
  • Codling, E. A. and Bode, N. W. (2014). Copycat dynamics in leaderless animal group navigation. Movement Ecology 2 11.
  • Croft, D. P., James, R. and Krause, J. (2008). Exploring Animal Social Networks. Princeton Univ. Press, Princeton, NJ.
  • Durante, D. and Dunson, D. B. (2014). Nonparametric Bayes dynamic modelling of relational data. Biometrika 101 883–898.
  • Durban, J. W. and Pitman, R. L. (2012). Antarctic killer whales make rapid, round-trip movements to subtropical waters: Evidence for physiological maintenance migrations? Biol. Lett. 8 274–277.
  • Durban, J. W., Fearnbach, H., Burrows, D. G., Ylitalo, G. M. and Pitman, R. L. (2016). morphological and ecological evidence for two sympatric forms of Type B killer whale around the Antarctic peninsula. Polar Biology April 1–6.
  • Forester, J. D., Ives, A. R., Turner, M. G., Anderson, D. P., Fortin, D., Beyer, H. L., Smith, D. W. and Boyce, M. S. (2007). State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol. Mono. 77 285–299.
  • Franz, M., McLean, E., Tung, J., Altmann, J. and Alberts, S. C. (2015). Self-organizing dominance hierarchies in a wild primate population. Proceedings of the Royal Society B: Biological Sciences 282 20151512.
  • Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Statist. 15 502–523.
  • Gelfand, A. E., Diggle, P., Guttorp, P. and Fuentes, M. (2010). Handbook of Spatial Statistics, CRC Press, Boca Raton, FL.
  • Goldenberg, S. Z., de Silva, S., Rasmussen, H. B., Douglas-Hamilton, I. and Wittemyer, G. (2014). Controlling for behavioural state reveals social dynamics among male African elephants, Loxodonta africana. Anim. Behav. 95 111–119.
  • Hanks, E. M., Hooten, M. B., Johnson, D. S. and Sterling, J. T. (2011). Velocity-based movement modeling for individual and population level inference. PLoS ONE 6 e22795.
  • Hanks, E. M., Schliep, E. M., Hooten, M. B. and Hoeting, J. A. (2015). Restricted spatial regression in practice: Geostatistical models, confounding, and robustness under model misspecification. Environmetrics 26 243–254.
  • Hooten, M. B., Johnson, D. S., Hanks, E. M. and Lowry, J. H. (2010). Agent-based inference for animal movement and selection. J. Agric. Biol. Environ. Stat. 15 523–538.
  • Johnson, D. S., London, J. M. and Kuhn, C. E. (2011). Bayesian inference for animal space use and other movement metrics. J. Agric. Biol. Environ. Stat. 16 357–370.
  • Johnson, D. S., London, J. M., Lea, M.-A. and Durban, J. W. (2008). Continuous-time correlated random walk model for animal telemetry data. Ecology 89 1208–1215.
  • Jonsen, I. D., Flemming, J. M. and Myers, R. A. (2005). Robust state-space modeling of animal movement data. Ecology 86 2874–2880.
  • Krause, J., Croft, D. P. and James, R. (2007). Social network theory in the behavioural sciences: Potential applications. Behav. Ecol. Sociobiol. 62 15–27.
  • Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D. and Morales, J. M. (2012). Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology 93 2336–2342.
  • Langrock, R., Hopcraft, J. G. C., Blackwell, P. G., Goodall, V., King, R., Niu, M., Patterson, T. A., Pedersen, M. W., Skarin, A. and Schick, R. S. (2014). Modelling group dynamic animal movement. Methods in Ecology and Evolution 5 190–199.
  • Lemasson, B. H., Anderson, J. J. and Goodwin, R. A. (2013). Motion-guided attention promotes adaptive communications during social navigation. Proceedings of the Royal Society B: Biological Sciences 280 20122003.
  • Levin, I. I., Zonana, D. M., Burt, J. M. and Safran, R. J. (2015). Performance of encounternet tags: Field tests of miniaturized proximity loggers for use on small birds. PLoS ONE 10 e0137242.
  • McClintock, B. T., Johnson, D. S., Hooten, M. B., Hoef, J. M. V. and Morales, J. M. (2014). When to be discrete: The importance of time formulation in understanding animal movement. Movement Ecology 2 21.
  • Miller, P. J. O. (2006). Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192 449–459.
  • Morales, J. M., Moorcroft, P. R., Matthiopoulos, J., Frair, J. L., Kie, J. G., Powell, R. A., Merrill, E. H. and Haydon, D. T. (2010). Building the bridge between animal movement and population dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences 365 2289–2301.
  • Morin, P. A., Parsons, K. M., Archer, F. I., Ávila-Arcos, M. C., Barrett-Lennard, L. G., Dalla Rosa, L., Duchêne, S., Durban, J. W., Ellis, G. M., Ferguson, S. H., Ford, J. K., Ford, M. J., Garilao, C., Gilbert, M. T. P., Kaschner, K., Matkin, C. O., Petersen, S. D., Robertson, K. M., Visser, I. N., Wade, P. R., Ho, S. Y. W. and Foote, A. D. (2015). geographical and temporal dynamics of a global radiation and diversification in the killer whale. Mol. Ecol. 24 3964–3979.
  • Parsons, K. M., Balcomb, K. C., Ford, J. K. B. and Durban, J. W. (2009). The social dynamics of southern resident killer whales and conservation implications for this endangered population. Anim. Behav. 77 963–971.
  • Pinter-Wollman, N., Hobson, E. A., Smith, J. E., Edelman, A. J., Shizuka, D., de Silva, S., Waters, J. S., Prager, S. D., Sasaki, T., Wittemyer, G., Fewell, J. and McDonald, D. B. (2013). The dynamics of animal social networks: Analytical, conceptual, and theoretical advances. Behavioral Ecology art047.
  • Pitman, R. L. and Durban, J. W. (2010). Killer whale predation on penguins in Antarctica. Polar Biol. 33 1589–1594.
  • Pitman, R. L. and Durban, J. W. (2012). Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (Orcinus orca), type B, in Antarctic Peninsula waters. Mar. Mamm. Sci. 28 16–36.
  • Pitman, R. L. and Ensor, P. (2003). Three forms of killer whales (Orcinus orca) in Antarctic waters. J. Cetacean Res. Manag. 5 131–140.
  • Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. Chapman & Hall, Boca Raton, FL.
  • Russell, J. C., Hanks, E. M. and Haran, M. (2015). Dynamic models of animal movement with spatial point process interactions. J. Agric. Biol. Environ. Stat. 1–19.
  • Sarkar, P. and Moore, A. W. (2005). Dynamic social network analysis using latent space models. ACM SIGKDD Explor. Newsl. 7 31–40.
  • Scharf, H. R., Hooten, M. B., Fosdick, B. K., Johnson, D. S., London, J. M. and Durban, J. W. (2016a). Supplement to “Dynamic social networks based on movement.” DOI:10.1214/16-AOAS970SUPPA.
  • Scharf, H. R., Hooten, M. B., Fosdick, B. K., Johnson, D. S., London, J. M. and Durban, J. W. (2016b). Supplement to “Dynamic social networks based on movement.” DOI:10.1214/16-AOAS970SUPPB.
  • Scharf, H. R., Hooten, M. B., Fosdick, B. K., Johnson, D. S., London, J. M. and Durban, J. W. (2016c). Supplement to “Dynamic social networks based on movement.” DOI:10.1214/16-AOAS970SUPPC.
  • Sewell, D. K. and Chen, Y. (2015). Latent space models for dynamic networks. J. Amer. Statist. Assoc. 110 1646–1657.
  • Sih, A., Hanser, S. F. and McHugh, K. A. (2009). Social network theory: New insights and issues for behavioral ecologists. Behav. Ecol. Sociobiol. 63 975–988.
  • Wey, T., Blumstein, D. T., Shen, W. and Jordán, F. (2008). Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 75 333–344.
  • Williams, R. and Lusseau, D. (2006). A killer whale social network is vulnerable to targeted removals. Biol. Lett. 2 497–500.
  • Williams, R., Trites, A. W. and Bain, D. E. (2002). Behavioural responses of killer whales (Orcinus orca) to whale-watching boats: Opportunistic observations and experimental approaches. J. Zool. 256 255–270.

Supplemental materials

  • Supplement A: MCMC details. Priors and full-conditionals for the model are presented.
  • Supplement B: Animation. Animation of killer whales.
  • Supplement C: R code. Code used for simulation in Section 3.