The Annals of Applied Statistics

Spatio-temporal assimilation of modelled catchment loads with monitoring data in the Great Barrier Reef

Daniel W. Gladish, Petra M. Kuhnert, Daniel E. Pagendam, Christopher K. Wikle, Rebecca Bartley, Ross D. Searle, Robin J. Ellis, Cameron Dougall, Ryan D. R. Turner, Stephen E. Lewis, Zoë T. Bainbridge, and Jon E. Brodie

Full-text: Open access

Abstract

Soil erosion and sediment transport into waterways and the ocean can adversely affect water clarity, leading to the deterioration of marine ecosystems such as the iconic Great Barrier Reef (GBR) in Australia. Quantifying a sediment load and its associated uncertainty is an important task in delineating how changes in management practices can contribute to improvements in water quality, and therefore continued sustainability of the GBR. However, monitoring data are spatially (and often temporally) sparse, making load estimation complicated, particularly when there are lengthy periods between sampling or during peak flow periods of major events when samples cannot be safely taken.

We develop a spatio-temporal statistical model that is mechanistically motivated by a process-based deterministic model called Dynamic SedNet. The model is developed within a Bayesian hierarchical modelling framework that uses dimension reduction to accommodate seasonal and spatial patterns to assimilate monitored sediment concentration and flow data with output from Dynamic SedNet. The approach is applied in the Upper Burdekin catchment in Queensland, Australia, where we obtain daily estimates of sediment concentrations, stream discharge volumes and sediment loads at 411 spatial locations across 20 years. Our approach provides a method for assimilating both monitoring data and modelled output, providing a statistically rigorous method for quantifying uncertainty through space and time that was previously unavailable through process-based models.

Article information

Source
Ann. Appl. Stat., Volume 10, Number 3 (2016), 1590-1618.

Dates
Received: June 2015
Revised: June 2016
First available in Project Euclid: 28 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1475069620

Digital Object Identifier
doi:10.1214/16-AOAS950

Mathematical Reviews number (MathSciNet)
MR3553237

Zentralblatt MATH identifier
06775279

Keywords
Water quality Bayesian hierarchical model SedNet catchment modelling spatio-temporal

Citation

Gladish, Daniel W.; Kuhnert, Petra M.; Pagendam, Daniel E.; Wikle, Christopher K.; Bartley, Rebecca; Searle, Ross D.; Ellis, Robin J.; Dougall, Cameron; Turner, Ryan D. R.; Lewis, Stephen E.; Bainbridge, Zoë T.; Brodie, Jon E. Spatio-temporal assimilation of modelled catchment loads with monitoring data in the Great Barrier Reef. Ann. Appl. Stat. 10 (2016), no. 3, 1590--1618. doi:10.1214/16-AOAS950. https://projecteuclid.org/euclid.aoas/1475069620


Export citation

References

  • Aksoy, H. and Kavvas, M. L. (2005). A review of hillslope and watershed scale erosion and sediment transport models. Catena 64 247–271.
  • Armour, J. D., Hateley, L. R. and Pitt, G. L. (2009). Catchment modelling of sediment, nitrogen and phosphorus nutrient loads with SedNet/ANNEX in the Tully–Murray basin. Marine and Freshwater Research 60 1091–1096.
  • Bainbridge, Z. T., Lewis, S. E., Smithers, S. G., Kuhnert, P. M., Henderson, B. L. and Brodie, J. E. (2014). Fine-suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin river catchment, Queensland, Australia. Water Resources Research 50 9067–9087.
  • Bartley, R., Wilkinson, S. N., Hawdon, A., Abbott, B. N. and Post, D. A. (2010). Impacts of improved grazing land management on sediment yields. Part 2: Catchment response. Journal of Hydrology 389 249–259.
  • Bartley, R., Bainbridge, Z. T., Lewis, S. E., Kroon, F. J., Wilkinson, S. N., Brodie, J. E. and Silburn, D. M. (2014). Relating sediment impacts on coral reefs to watershed sources, processes and management: A review. Sci. Total Environ. 468–469 1138–1153.
  • Berliner, L. M. (1996). Hierarchical Bayesian time series models. In Maximum Entropy and Bayesian Methods (Santa Fe, NM, 1995) (K. M. Hanson and R. N. Silver, eds.). Fund. Theories Phys. 79 15–22. Kluwer Academic, Dordrecht.
  • Beven, K. and Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology 249 11–29.
  • Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. J. R. Stat. Soc., Ser. B Stat. Methodol. 26 211–252.
  • Brodie, J., Schroeder, T., Rohde, K., Faithful, J., Masters, B., Dekker, A., Brando, V. and Maughan, M. (2010). Dispersal of suspended sediments and nutrients in the Great Barrier Reef lagoon during river-discharge events: Conclusions from satellite remote sensing and concurrent flood-plume sampling. Marine and Freshwater Research 61 651–664.
  • Brodie, J. E., Devlin, M., Haynes, D. and Waterhouse, J. (2011). Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106 281–302.
  • Brodie, J. E., Kroon, F. J., Schaffelke, B., Wolanski, E. C., Lewis, S. E., Devlin, M. J., Bohnet, I. C., Bainbridge, Z. T., Waterhouse, J. and Davis, A. M. (2012). Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Mar. Pollut. Bull. 65 81–100.
  • Brynjarsdóttir, J. and Berliner, L. M. (2014). Dimension-reduced modeling of spatio-temporal processes. J. Amer. Statist. Assoc. 109 1647–1659.
  • Chen, D., Dahlgren, R. A., Shen, Y. and Lu, J. (2012). A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment. Science of the Total Environment 430 59–67.
  • Chiew, F. H. S., Peel, M. C. and Western, A. W. (2002). Application and testing of the simple rainfall-runoff model SIMHYD. In Mathematical Models of Small Watershed Hydrology and Applications (V. P. Singh and D. K. Frevert, eds.) 335–367. Water Resources Publications, Littleton, CO.
  • Clark, J. S. (2005). Why environmental scientists are becoming bayesians. Ecology Letters 8 2–14.
  • Cohn, T. A. (1995). Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Reviews of Geophysics 33 1117–1123.
  • Cohn, T. A., Caulder, D. L., Gilroy, E. J., Zynjuk, L. D. and Summers, R. M. (1992). The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering Chesapeake Bay. Water Resources Research 28 2353–2363.
  • Cooper, D. M. and Watts, C. D. (2002). A comparison of river load estimation techniques: Application to dissolved organic carbon. Environmetrics 13 733–750.
  • Crawford, C. G. (1991). Estimation of suspended-sediment rating curves and mean suspended-sediment loads. Journal of Hydrology 129 331–348.
  • Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. Wiley, Hoboken, NJ.
  • De’ath, G., Fabricius, K. E., Sweatman, H. and Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109 17995–17999.
  • Doherty, J. and Hunt, R. J. (2009). Two statistics for evaluating parameter identifiability and error reduction. Journal of Hydrology 366 119–127.
  • Doherty, J. and Johnston, J. M. (2003). Methodologies for calibration and predictive analysis of a watershed model. Journal of the American Water Resources Association 39 251–265.
  • Fabricius, K. E., Logan, M., Weeks, S. and Brodie, J. (2014). The effects of river run-off on water clarity across the central Great Barrier Reef. Mar. Pollut. Bull. 84 191–200.
  • Furnas, M. J. (2003). Catchments and corals: Terrestrial runoff to the Great Barrier Reef, report, Australian Institute of Marine Science and CRC Reef, Townsville, Australia.
  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6 721–741.
  • Gladish, D. W. and Wikle, C. K. (2014). Physically motivated scale interaction parameterization in reduced rank quadratic nonlinear dynamic spatio-temporal models. Environmetrics 25 230–244.
  • Gladish, D. W., Kuhnert, P. M., Pagendam, D. E., Wikle, C. K., Bartley, R. B., Searle, R. D., Ellis, R. J., Dougall, C., Turner, R. D. R., Lewis, S. E., Bainbridge, Z. T. and Brodie, J. E. (2016). Supplement to “Spatio-temporal assimilation of modelled catchment loads with monitoring data in the Great Barrier Reef.” DOI:10.1214/16-AOAS950SUPP.
  • Graf, A., Bogena, H. R., Drüe, C., Hardelauf, H., Pütz, T., Heinemann, G. and Vereecken, H. (2014). Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resources Research 50 4837–4857.
  • Kuhnert, P. M., Henderson, B. L., Lewis, S. E., Bainbridge, Z. T., Wilkinson, S. N. and Brodie, J. E. (2012). Quantifying total suspended sediment export from the Burdekin River catchment using the loads regression estimator tool. Water Resources Research 48 W04533.
  • Letcher, R. A., Jakeman, A. J., Calfas, M., Linforth, S., Baginska, B. and Lawrence, I. (2002). A comparison of catchment water quality models and direct estimation techniques. Environmental Modelling and Software 17 77–85.
  • Le Coz, J., Renard, B., Bonnifait, L., Branger, F. and Le Boursicaud, R. (2014). Combining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approach. Journal of Hydrology 509 573–587.
  • Littlewood, I. G. and Marsh, T. J. (2005). Annual freshwater river mass loads from Great Britain, 1975–1994: Estimation algorithm, database and monitoring network issues. Journal of Hydrology 304 221–237.
  • Liu, Y., Yang, P., Hu, C. and Guo, H. (2008). Water quality modeling for load reduction under uncertainty: A Bayesian approach. Water Research 42 3305–3314.
  • Lough, J. M., Lewis, S. E. and Cantin, N. E. (2015). Freshwater impacts in the central Great Barrier Reef: 1648-2011. Coral Reefs 34 1–13.
  • Mantovan, P. and Todini, E. (2006). Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. Journal of Hydrology 330 368–381.
  • McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J. and Barnes, D. (2003). Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421 727–730.
  • Moyeed, R. A. and Clarke, R. T. (2005). The use of Bayesian methods for fitting rating curves, with case studies. Advances in Water Resources 28 807–818.
  • Oleson, J. J. and Wikle, C. K. (2013). Predicting infectious disease outbreak risk via migratory waterfowl vectors. J. Appl. Stat. 40 656–673.
  • Pagendam, D. E., Kuhnert, P. M., Leeds, W. B., Wikle, C. K., Bartley, R. and Peterson, E. E. (2014). Assimilating catchment processes with monitoring data to estimate sediment loads to the Great Barrier Reef. Environmetrics 25 214–229.
  • Perrin, C., Michel, C. and Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology 279 275–289.
  • R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Reef Water Quality Protection Plan Secretariat (2013). Reef Water Quality Protection Plan. Available at http://www.reefplan.qld.gov.au/resources/assets/reef-plan-2013.pdf.
  • Reitan, T. and Petersen-Øverleir, A. (2011). Dynamic rating curve assessment in unstable rivers using Ornstein–Uhlenbeck processes. Water Resources Research 47 W02524.
  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. and Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). U.S. Department of Agriculture, Agriculture Handbook No. 703, 404 pp.
  • Rosewell, C. J. (1993). SOILLOSS—A program to assis in the selection of management practices to reduce erosion. Technical Report No. Technical Handbook No.11, 2nd edition, Soil Conservation Service, NSW.
  • Rustomji, P. and Wilkinson, S. N. (2008). Applying bootstrap resampling to quantify uncertainty in fluvial suspended sediment loads estimated using rating curves. Water Resources Research 44 W09435.
  • Salazar, E., Sansó, B., Finley, A. O., Hammerling, D., Steinsland, I., Wang, X. and Delamater, P. (2011). Comparing and blending regional climate model predictions for the American Southwest. J. Agric. Biol. Environ. Stat. 16 586–605.
  • Sansó, B. and Guenni, L. (1999). Venezuelan rainfall data analysed by using a Bayesian space–time model. J. R. Stat. Soc. Ser. C. Appl. Stat. 48 345–362.
  • Schmelter, M. L., Hooten, M. B. and Stevens, D. K. (2011). Bayesian sediment transport model for unisize bed load. Water Resources Research 47 W11514.
  • Tomkins, K. M. (2014). Uncertainty in streamflow rating curves: Methods, controls and consequences. Hydrological Processes 28 464–481.
  • Walling, D. E. and Webb, B. W. (1985). Estimating the discharge of contaminants to coastal waters by rivers: Some cautionary comments. Mar. Pollut. Bull. 16 488–492.
  • Wang, Y. G., Kuhnert, P. and Henderson, B. (2011). Load estimation with uncertainties from opportunistic sampling data—A semiparametric approach. Journal of Hydrology 396 148–157.
  • Wikle, C. K. and Berliner, L. M. (2007). A Bayesian tutorial for data assimilation. Phys. D 230 1–16.
  • Wikle, C. K. and Hooten, M. B. (2010). A general science-based framework for dynamical spatio-temporal models. TEST 19 417–451.
  • Wilkinson, S. N., Hancock, G. J., Bartley, R., Hawdon, A. A. and Keen, R. J. (2013). Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, burdekin river basin, Australia. Agriculture, Ecosystems and Environment 180 90–102.
  • Wilkinson, S. N., Dougall, C., Kinsey-Henderson, A. E., Searle, R. D., Ellis, R. J. and Bartley, R. (2014). Development of a time-stepping sediment budget model for assessing land use impacts in large river basins. Sci. Total Environ. 468–469 1210–1224.
  • Wu, W., Clark, J. S. and Vose, J. M. (2010). Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling. Journal of Hydrology 394 436–446.
  • Wu, G., Holan, S. H. and Wikle, C. K. (2013). Hierarchical Bayesian spatio-temporal Conway-Maxwell Poisson models with dynamic dispersion. J. Agric. Biol. Environ. Stat. 18 335–356.

Supplemental materials

  • Supplement to “Spatio-temporal assimilation of modelled catchment loads with monitoring data in the Great Barrier Reef”. The supplementary material contains additional information related to the development and results of our model. We present figures for the available monitoring data described in Section 2. Additional posterior results not discussed in Section 4 are shown, including results for the dynamic parameters and covariate coefficients. Lastly, the details of the Markov Chain Monte Carlo algorithm are included.