The Annals of Applied Statistics

Full matching approach to instrumental variables estimation with application to the effect of malaria on stunting

Hyunseung Kang, Benno Kreuels, Jürgen May, and Dylan S. Small

Full-text: Open access


Most previous studies of the causal relationship between malaria and stunting have been studies where potential confounders are controlled via regression-based methods, but these studies may have been biased by unobserved confounders. Instrumental variables (IV) regression offers a way to control for unmeasured confounders where, in our case, the sickle cell trait can be used as an instrument. However, for the instrument to be valid, it may still be important to account for measured confounders. The most commonly used instrumental variable regression method, two-stage least squares, relies on parametric assumptions on the effects of measured confounders to account for them. Additionally, two-stage least squares lacks transparency with respect to covariate balance and weighing of subjects and does not blind the researcher to the outcome data. To address these drawbacks, we propose an alternative method for IV estimation based on full matching. We evaluate our new procedure on simulated data and real data concerning the causal effect of malaria on stunting among children. We estimate that the risk of stunting among children with the sickle cell trait decreases by 0.22 per every malaria episode prevented by the sickle cell trait, a substantial effect of malaria on stunting ($p$-value: 0.011, 95% CI: 0.044, 1).

Article information

Ann. Appl. Stat., Volume 10, Number 1 (2016), 335-364.

Received: June 2015
Revised: August 2015
First available in Project Euclid: 25 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Full matching instrumental variables malaria stunting two-stage least squares


Kang, Hyunseung; Kreuels, Benno; May, Jürgen; Small, Dylan S. Full matching approach to instrumental variables estimation with application to the effect of malaria on stunting. Ann. Appl. Stat. 10 (2016), no. 1, 335--364. doi:10.1214/15-AOAS894.

Export citation


  • Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. J. Econometrics 113 231–263.
  • Aidoo, M., Terlouw, D. J., Kolczak, M. S., McElroy, P. D., ter Kuile, F. O., Kariuki, S., Nahlen, B. L., Lal, A. A. and Udhayakumar, V. (2002). Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359 1311–1312.
  • Angrist, J. D. and Imbens, G. W. (1995). Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J. Amer. Statist. Assoc. 90 431–442.
  • Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 444–455.
  • Angrist, J. D. and Krueger, A. B. (1991). Does compulsory school attendance affect schooling and earnings? Q. J. Econ. 106 979–1014.
  • Ashcroft, M. T., Desai, P. and Richardson, S. A. (1976). Growth, behaviour, and educational achievement of Jamaican children with sickle-cell trait. Br. Med. J. 1 1371–1373.
  • Ashcroft, M. T., Desai, P., Grell, G. A., Serjeant, B. E. and Serjeant, G. R. (1978). Heights and weights of West Indian children with the sickle cell trait. Arch. Dis. Child. 53 596–598.
  • Baiocchi, M., Cheng, J. and Small, D. S. (2014). Instrumental variable methods for causal inference. Stat. Med. 33 2297–2340.
  • Baiocchi, M., Small, D. S., Lorch, S. and Rosenbaum, P. R. (2010). Building a stronger instrument in an observational study of perinatal care for premature infants. J. Amer. Statist. Assoc. 105 1285–1296.
  • Bound, J., Jaeger, D. A. and Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between instruments and the endogenous variable is weak. J. Amer. Statist. Assoc. 90 443–450.
  • Brookhart, M. A. and Schneeweiss, S. (2007). Preference-based instrumental variable methods for the estimation of treatment effects: Assessing validity and interpreting results. Int. J. Biostat. 3 Art. 14, 25.
  • Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In Aspects of Labor Market Behaviour: Essays in Honour of John Vanderkamp (L. N. Christofides, E. K. Grant and R. Swidinsky, eds.) 201–222. Univ. Toronto Press, Toronto.
  • Cheng, J. (2011). Using the instrumental propensity score in observational studies for causal effects. In Joint Statistical Meeting Presentation. Miami, FL.
  • Cheng, J., Qin, J. and Zhang, B. (2009). Semiparametric estimation and inference for distributional and general treatment effects. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 881–904.
  • Cholera, R., Brittain, N. J., Gillrie, M. R., Lopera-Mesa, T. M., Diakité, S. A. S., Arie, T., Krause, M. A., Guindo, A., Tubman, A., Fujioka, H., Diallo, D. A., Doumbo, O. K., Ho, M., Wellems, T. E. and Fairhurst, R. M. (2008). Impaired cytoadherence of plasmodium falciparum-infected erythrocytes containing sickle hemoglobin. Proc. Natl. Acad. Sci. USA 105 991–996.
  • Cochran, W. G. (1965). The planning of observational studies of human populations. J. R. Stat. Soc., A (General) 234–266.
  • Crookston, B. T., Alder, S. C., Boakye, I., Merrill, R. M., Amuasi, J. H., Porucznik, C. A., Stanford, J. B., Dickerson, T. T., Dearden, K. A., Hale, D. C., Sylverken, J., Snow, B. S., Osei-Akoto, A. and Ansong, D. (2010). Exploring the relationship between chronic undernutrition and asymptomatic malaria in Ghanaian children. Malar. J. 9.
  • Davey Smith, G. and Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32 1–22.
  • Deen, J. L., Walraven, G. E. L. and von Seidlein, L. (2002). Increased risk for malaria in chronically malnourished children under 5 years of age in rural Gambia. J. Trop. Pediatr. 48 78–83.
  • Deribew, A., Alemseged, F., Tessema, F., Sena, L., Birhanu, Z., Zeynudin, A., Sudhakar, M., Abdo, N., Deribe, K. and Biadgilign, S. (2010). Malaria and under-nutrition: A community based study among under-five children at risk of malaria, South-West Ethiopia. PLoS ONE 5 e10775.
  • Ehrhardt, S., Burchard, G. D., Mantel, C., Cramer, J. P., Kaiser, S., Kubo, M., Otchwemah, R. N., Bienzle, U. and Mockenhaupt, F. P. (2006). Malaria, anemia, and malnutrition in African children—defining intervention priorities. J. Infect. Dis. 194 108–114.
  • Eisele, T. P., Larsen, D. A., Anglewicz, P. A., Keating, J., Yukich, J., Bennett, A., Hutchinson, P. and Steketee, R. W. (2012). Malaria prevention in pregnancy, birthweight, and neonatal mortality: A meta-analysis of 32 national cross-sectional datasets in Africa. Lancet, Infect. Dis. 12 942–949.
  • Fillol, F., Sarr, J. B., Boulanger, D., Cisse, B., Sokhna, C., Riveau, G., Simondon, K. B. and Remoué, F. (2009). Impact of child malnutrition on the specific anti-plasmodium falciparum antibody response. Malar. J. 8 116.
  • Friedman, M. J. (1978). Erythrocytic mechanism of sickle cell resistance to malaria. Proc. Natl. Acad. Sci. USA 75 1994–1997.
  • Friedman, M. J. and Trager, W. (1981). The biochemistry of resistance to malaria. Sci. Am. 244 154–155.
  • Frölich, M. (2007). Nonparametric IV estimation of local average treatment effects with covariates. J. Econometrics 139 35–75.
  • Frölich, M. and Melly, B. (2010). Estimation of quantile treatment effects with Stata. Stata J. 10 423–457.
  • Genton, B., Al-Yaman, F., Ginny, M., Taraika, J. and Alpers, M. P. (1998). Relation of anthropometry to malaria morbidity and immunity in Papua New Guinean children. Am. J. Clin. Nutr. 68 734–741.
  • WHO Multicentre Growth Reference Study Group (2006). WHO child growth standards based on length/height, weight and age. Acta Paediatr., Suppl. 450 76–85.
  • Hansen, B. B. (2004). Full matching in an observational study of coaching for the SAT. J. Amer. Statist. Assoc. 99 609–618.
  • Hansen, B. B. and Klopfer, S. O. (2006). Optimal full matching and related designs via network flows. J. Comput. Graph. Statist. 15 609–627.
  • Haviland, A., Nagin, D. S. and Rosenbaum, P. R. (2007). Combining propensity score matching and group-based trajectory analysis in an observational study. Psychol. Methods 12 247.
  • Hernán, M. A. and Robins, J. M. (2006). Instruments for causal inference: An epidemiologist’s dream? Epidemiology 17 360–372.
  • Hodges, J. L. Jr. and Lehmann, E. L. (1963). Estimates of location based on rank tests. Ann. Math. Statist. 34 598–611.
  • Holland, P. W. (1986). Statistics and causal inference: Rejoinder. J. Amer. Statist. Assoc. 81 968–970.
  • Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equations models. Sociol. Method. 18 449–484.
  • Imbens, G. W. and Rubin, D. B. (1997). Bayesian inference for causal effects in randomized experiments with noncompliance. Ann. Statist. 25 305–327.
  • Kang, H., Kreuels, B., Adjei, O., Krumkamp, R., May, J. and Small, D. S. (2013). The causal effect of malaria on stunting: A Mendelian randomization and matching approach. Int. J. Epidemiol. 42 1390–1398.
  • Kang, H., Kreuels, B., May, J. and Small, D. S. (2016). Supplement to “Full matching approach to instrumental variables estimation with application to the effect of malaria on stunting.” DOI:10.1214/15-AOAS894SUPP.
  • Keele, L. J. and Morgan, J. (2013). Stronger instruments by design. Working paper.
  • Kobbe, R., Kreuzberg, C., Adjei, S., Thompson, B., Langefeld, I., Thompson, P. A., Abruquah, H. H., Kreuels, B., Ayim, M., Busch, W., Marks, F., Amoah, K., Opoku, E., Meyer, C. G., Adjei, O. and May, J. (2007). A randomized controlled trial of extended intermittent preventive antimalarial treatment in infants. Clin. Infect. Dis. 45 16–25.
  • Kramer, M. S., Rooks, Y. and Pearson, H. A. (1978). Growth and development in children with sickle-cell trait: A prospective study of matched pairs. N. Engl. J. Med. 299 686–689.
  • Kreuels, B., Ehrhardt, S., Kreuzberg, C., Adjei, S., Kobbe, R., Burchard, G., Ehmen, C., Ayim, M., Adjei, O. and May, J. (2009). Sickle cell trait (HbAS) and stunting in children below two years of age in an area of high malaria transmission. Malar. J. 8 16.
  • Kreuels, B., Kreuzberg, C., Kobbe, R., Ayim-Akonor, M., Apiah-Thompson, P., Thompson, B., Ehmen, C., Adjei, S., Langefeld, I., Adjei, O. and May, J. (2010). Differing effects of HbS and HbC traits on uncomplicated falciparum malaria, anemia, and child growth. Blood 115 4551–4558.
  • May, J., Evans, J. A., Timmann, C., Ehmen, C., Busch, W., Thye, T., Agbenyega, T. and Horstmann, R. D. (2007). Hemoglobin variants and disease manifestations in severe falciparum malaria. J. Am. Med. Assoc. 297 2220–2226.
  • Normand, S.-L. T., Landrum, M. B., Guadagnoli, E., Ayanian, J. Z., Ryan, T. J., Cleary, P. D. and McNeil, B. J. (2001). Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores. J. Clin. Epidemiol. 54 387–398.
  • Nyakeriga, A. M., Troye-Blomberg, M., Chemtai, A. K., Marsh, K. and Williams, T. N. (2004). Malaria and nutritional status in children living on the coast of Kenya. Scand. J. Immunol. 59 615–616.
  • Ogburn, E. L., Rotnitzky, A. and Robins, J. M. (2015). Doubly robust estimation of the local average treatment effect curve. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 373–396.
  • Rehan, N. (1981). Growth status of children with and without sickle cell trait. Clin. Pediatr. (Phila) 20 705–709.
  • Rosenbaum, P. R. (1984). The consequences of adjustment for a concomitant variable that has been affected by the treatment. J. Roy. Statist. Soc. Ser. A 147 656–666.
  • Rosenbaum, P. R. (1991). A characterization of optimal designs for observational studies. J. Roy. Statist. Soc. Ser. B 53 597–610.
  • Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer, New York.
  • Rosenbaum, P. R. (2005). Heterogeneity and causality: Unit heterogeneity and design sensitivity in observational studies. Amer. Statist. 59 147–152.
  • Rosenbaum, P. R. (2010). Design of Observational Studies. Springer, New York.
  • Rosenbaum, P. R. and Silber, J. H. (2009). Amplification of sensitivity analysis in matched observational studies. J. Amer. Statist. Assoc. 104 1398–1405.
  • Rubin, Donald B. (1980). Comment on “Randomized analysis of experimental data: The Fisher randomization test.” J. Amer. Statist. Assoc. 75 591–593.
  • Rubin, D. B. (2007). The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Stat. Med. 26 20–36.
  • Rubin, D. B. (2009). Author’s reply: Should observational studies be designed to allow lack of balance in covariate distributions across treatment groups? [No. 2312697]. Stat. Med. 28 1420–1423.
  • Rubin, D. B. and Waterman, R. P. (2006). Estimating the causal effects of marketing interventions using propensity score methodology. Statist. Sci. 21 206–222.
  • Snow, R. W., Nahlen, B., Palmer, A., Donnelly, C. A., Gupta, S. and Marsh, K. (1998). Risk of severe malaria among African infants: Direct evidence of clinical protection during early infancy. J. Infect. Dis. 177 819–822.
  • Stock, J. H., Wright, J. H. and Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. J. Bus. Econom. Statist. 20 518–529.
  • Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statist. Sci. 25 1–21.
  • Swanson, S. A. and Hernán, M. A. (2013). Commentary: How to report instrumental variable analyses (suggestions welcome). Epidemiology 24 370–374.
  • Tan, Z. (2006). Regression and weighting methods for causal inference using instrumental variables. J. Amer. Statist. Assoc. 101 1607–1618.
  • Taylor, S. M., Parobek, C. M. and Fairhurst, R. M. (2012). Haemoglobinopathies and the clinical epidemiology of malaria: A systematic review and meta-analysis. Lancet, Infect. Dis. 12 457–468.
  • Williams, T. N., Mwangi, T. W., Roberts, D. J., Alexander, N. D., Weatherall, D. J., Wambua, S., Kortok, M., Snow, R. W. and Marsh, K. (2005). An immune basis for malaria protection by the sickle cell trait. PLoS Med. 2 e128.
  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, 2nd ed. MIT Press, Cambridge, MA.
  • World Health Organization (2014). World Malaria Report 2014. World Health Organization, Geneva.
  • Yang, F., Zubizarreta, J. R., Small, D. S., Lorch, S. and Rosenbaum, P. R. (2014). Dissonant conclusions when testing the validity of an instrumental variable. Amer. Statist. 68 253–263.
  • Zubizarreta, J. R., Paredes, R. D. and Rosenbaum, P. R. (2014). Matching for balance, pairing for heterogeneity in an observational study of the effectiveness of for-profit and not-for-profit high schools in Chile. Ann. Appl. Stat. 8 204–231.
  • Zubizarreta, J. R., Small, D. S., Goyal, N. K., Lorch, S. and Rosenbaum, P. R. (2013). Stronger instruments via integer programming in an observational study of late preterm birth outcomes. Ann. Appl. Stat. 7 25–50.

Supplemental materials

  • Supplement to “Full matching approach to instrumental variables estimation with application to the effect of malaria on stunting”. This document contains theoretical details of our matching method along with extended discussions about our estimator and the estimand. We also present a more detailed data analysis and additional simulation studies.