The Annals of Applied Statistics

A Bayesian approach to the evaluation of risk-based microbiological criteria for Campylobacter in broiler meat

Jukka Ranta, Roland Lindqvist, Ingrid Hansson, Pirkko Tuominen, and Maarten Nauta

Full-text: Open access

Abstract

Shifting from traditional hazard-based food safety management toward risk-based management requires statistical methods for evaluating intermediate targets in food production, such as microbiological criteria (MC), in terms of their effects on human risk of illness. A fully risk-based evaluation of MC involves several uncertainties that are related to both the underlying Quantitative Microbiological Risk Assessment (QMRA) model and the production-specific sample data on the prevalence and concentrations of microbes in production batches. We used Bayesian modeling for statistical inference and evidence synthesis of two sample data sets. Thus, parameter uncertainty was represented by a joint posterior distribution, which we then used to predict the risk and to evaluate the criteria for acceptance of production batches. We also applied the Bayesian model to compare alternative criteria, accounting for the statistical uncertainty of parameters, conditional on the data sets. Comparison of the posterior mean relative risk, $E(\mathit{RR}|\mathrm{data})=E(P(\mathrm{illness}|\mathrm{criterion\ is\ met})/P(\mathrm{illness})|\mathrm{data})$, and relative posterior risk, $\mathit{RPR}=P(\mathrm{illness}|\mathrm{data,\ criterion\ is\ met})/P(\mathrm{illness}|\mathrm{data})$, showed very similar results, but computing is more efficient for RPR. Based on the sample data, together with the QMRA model, one could achieve a relative risk of 0.4 by insisting that the default criterion be fulfilled for acceptance of each batch.

Article information

Source
Ann. Appl. Stat., Volume 9, Number 3 (2015), 1415-1432.

Dates
Received: March 2014
Revised: May 2015
First available in Project Euclid: 2 November 2015

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1446488745

Digital Object Identifier
doi:10.1214/15-AOAS845

Mathematical Reviews number (MathSciNet)
MR3418729

Zentralblatt MATH identifier
06525992

Keywords
Bayesian modeling hierarchical models evidence synthesis uncertainty OpenBUGS 2D Monte Carlo quantitative microbiological risk assessment food safety Campylobacter

Citation

Ranta, Jukka; Lindqvist, Roland; Hansson, Ingrid; Tuominen, Pirkko; Nauta, Maarten. A Bayesian approach to the evaluation of risk-based microbiological criteria for Campylobacter in broiler meat. Ann. Appl. Stat. 9 (2015), no. 3, 1415--1432. doi:10.1214/15-AOAS845. https://projecteuclid.org/euclid.aoas/1446488745


Export citation

References

  • Albert, I., Grenier, E., Denis, J.-B. and Rousseau, J. (2008). Quantitative risk assessment from farm to fork and beyond: A global Bayesian approach concerning food-borne diseases. Risk Analysis 28 557–571.
  • Codex Alimentarius Commission Commission, C. A. (1997). Principles and guidelines for the establishment and application of microbiological criteria related to foods. CAC/GL 21-1997.
  • Commeau, N., Cornu, M., Albert, I., Denis, J.-B. and Parent, E. (2012). Hierarchical Bayesian models to assess between- and within-batch variability of pathogen contamination in food. Risk Anal. 32 395–415.
  • European Food Safety Authority, European Centre for Disease Prevention and Control (2013). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA Journal 10 1–442.
  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515–533 (electronic).
  • Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge Univ. Press, New York.
  • Hansson, I., Pudas, N., Harbom, B. and Olsson-Engvall, E. (2010). Within-flock variations of Campylobacter loads in caeca and on carcasses from broilers. International Journal of Food Microbiology 141 51–55.
  • Kapperud, G., Espeland, G., Wahl, E., Walde, A., Herikstad, H., Gustavsen, S., Tveit, I., Natås, O., Bevanger, L. and Digranes, A. (2003). Factors associated with increased and decreased risk of Campylobacter infection: A prospective case-control study in Norway. Am. J. Epidemiol. 158 234–242.
  • Lindblad, M., Lindmark, H., Lambertz, S. T. and Lindqvist, R. (2006). Microbiological baseline study of broiler chickens at Swedish slaughterhouses. Journal of Food Protection 69 2875–2882.
  • Lindqvist, R. and Lindblad, M. (2008). Quantitative risk assessment of thermophilic Campylobacter spp. and cross-contamination during handling of raw broiler chickens evaluating strategies at the producer level to reduce human campylobacteriosis in Sweden. Int. J. Food Microbiol. 121 41–52.
  • Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2013). The BUGS Book, a Practical Introduction to Bayesian Analysis. CRC Press, Boca Raton, FL.
  • National Research Council (1985). An evaluation of the role of microbiological criteria for foods and food ingredients. National Research Council, The National Academies Press, Washington, DC.
  • Nauta, M. J., Sanaa, M. and Havelaar, A. H. (2012). Risk based microbiological criteria for Campylobacter in broiler meat in the European Union. Int. J. Food Microbiol. 158 209–217.
  • Nauta, N. J., Hill, A., Rosenquist, H., Brynestad, S., Fetsch, A., Van der Logt, P., Fazil, A., Christensen, B., Katsma, E., Borck, B. and Havelaar, A. H. (2009). A comparison of risk assessments on Campylobacter in broiler meat. International Journal of Food Microbiology 129 107–123.
  • Ranta, J. and Maijala, R. (2002). A probabilistic transmission model of Salmonella in the primary broiler production chain. Risk Anal. 22 47–58.
  • Ranta, J., Siekkinen, K.-M., Nuotio, L., Laukkanen, R., Hellström, S., Korkeala, H. and Maijala, R. (2010). Causal hidden variable model of pathogenic contamination from pig to pork. Stat. Model. 10 69–87.
  • Ranta, J., Mikkelä, A., Tuominen, P. and Wahlström, H. (2013). Bayesian risk assessment for Salmonella in egg laying flocks under zero apparent prevalence and dynamic test sensitivity. J. SFdS 154 8–30.
  • Ranta, J., Lindqvist, R., Hansson, I., Tuominen, P. and Nauta, M. (2015). Supplement to “A Bayesian approach to the evaluation of risk-based microbiological criteria for Campylobacter in broiler meat.” DOI:10.1214/15-AOAS845SUPP.
  • Rosenquist, H., Nielsen, N. L., Sommer, H. M., Nørrung, B. and Christensen, B. B. (2003). Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. International Journal of Food Microbiology 83 87–103.
  • Rosenqvist, H., Sommer, H. M., Nielsen, N. L. and Christensen, B. B. (2006). The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. International Journal of Food Microbiology 108 226–232.
  • Spiegelhalter, D. J. and Best, N. G. (2003). Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Stat. Med. 22 3687–3709.
  • Spiegelhalter, D. J. and Riesch, H. (2011). Don’t know, can’t know: Embracing deeper uncertainties when analysing risks. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 369 4730–4750.
  • Spor, A., Dillmann, C., Wang, S., de Vienne, D., Sicard, D. and Parent, E. (2010). Hierarchical Bayesian modelling for Saccharomyces cerevisiae population dynamics. Int. J. Food Microbiol. 142 25–35.
  • Ternhag, A., Törner, A., Svensson, Å., Giesecke, J. and Ekdahl, K. (2005). Mortality following Campylobacter infection: A registry-based linkage study. BMC Infectious Diseases 5 70.
  • Wingstrand, A., Neimann, J., Engberg, J., Nielsen, E. M., Gerner-Smidt, P., Wegener, H. C. and Mølbak, K. (2006). Fresh chicken as main risk factor for campylobacteriosis, Denmark. Emerging Infect. Dis. 12 280–285.

Supplemental materials

  • Appendix: A Bayesian approach to the evaluation of risk-based microbiological criteria for Campylobacter in broiler meat. More details of computations and the BUGS codes are described in the supplementary materials.