The Annals of Applied Statistics

A multiple filter test for the detection of rate changes in renewal processes with varying variance

Michael Messer, Marietta Kirchner, Julia Schiemann, Jochen Roeper, Ralph Neininger, and Gaby Schneider

Full-text: Open access

Abstract

Nonstationarity of the event rate is a persistent problem in modeling time series of events, such as neuronal spike trains. Motivated by a variety of patterns in neurophysiological spike train recordings, we define a general class of renewal processes. This class is used to test the null hypothesis of stationary rate versus a wide alternative of renewal processes with finitely many rate changes (change points). Our test extends ideas from the filtered derivative approach by using multiple moving windows simultaneously. To adjust the rejection threshold of the test, we use a Gaussian process, which emerges as the limit of the filtered derivative process. We also develop a multiple filter algorithm, which can be used when the null hypothesis is rejected in order to estimate the number and location of change points. We analyze the benefits of multiple filtering and its increased detection probability as compared to a single window approach. Application to spike trains recorded from dopamine midbrain neurons in anesthetized mice illustrates the relevance of the proposed techniques as preprocessing steps for methods that assume rate stationarity. In over 70% of all analyzed spike trains classified as rate nonstationary, different change points were detected by different window sizes.

Article information

Source
Ann. Appl. Stat., Volume 8, Number 4 (2014), 2027-2067.

Dates
First available in Project Euclid: 19 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1419001734

Digital Object Identifier
doi:10.1214/14-AOAS782

Mathematical Reviews number (MathSciNet)
MR3292488

Zentralblatt MATH identifier
06408769

Keywords
Stochastic processes renewal processes change point detection nonstationary rate multiple filters multiple time scales

Citation

Messer, Michael; Kirchner, Marietta; Schiemann, Julia; Roeper, Jochen; Neininger, Ralph; Schneider, Gaby. A multiple filter test for the detection of rate changes in renewal processes with varying variance. Ann. Appl. Stat. 8 (2014), no. 4, 2027--2067. doi:10.1214/14-AOAS782. https://projecteuclid.org/euclid.aoas/1419001734


Export citation

References

  • Antoch, J. and Hušková, M. (1994). Procedures for the detection of multiple changes in series of independent observations. In Asymptotic Statistics (Prague, 1993). Contrib. Statist. 3–20. Physica, Heidelberg.
  • Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory and Application. Prentice Hall, Englewood Cliffs, NJ.
  • Benda, J. and Herz, A. V. M. (2003). A universal model for spike-frequency adaptation. Neural Comput. 15 2523–2564.
  • Bertrand, P. (2000). A local method for estimating change points: The “hat-function.” Statistics 34 215–235.
  • Bertrand, P. R., Fhima, M. and Guillin, A. (2011). Off-line detection of multiple change points by the filtered derivative with $p$-value method. Sequential Anal. 30 172–207.
  • Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
  • Brodsky, B. E. and Darkhovsky, B. S. (1993). Nonparametric Methods in Change-Point Problems. Kluwer Academic, Dordrecht.
  • Brody, C. D. (1999). Correlations without synchrony. Neural Comput. 11 1537–1551.
  • Brown, E. N., Kass, R. E. and Mitra, P. P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nat. Neurosci. 7 456–461.
  • Csörgő, M. and Horváth, L. (1987). Asymptotic distributions of pontograms. Math. Proc. Cambridge Philos. Soc. 101 131–139.
  • Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley, Chichester.
  • Dreyer, J. K., Herrik, K. F., Berg, R. W. and Hounsgaard, J. D. (2010). Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 30 14273–14283.
  • Farkhooi, F., Strube-Bloss, M. and Nawrot, M. P. (2009). Serial correlation in neural spike trains: Experimental evidence, stochastic modelling, and single neuron variability. Phys. Rev. E 79 021905.
  • Gonon, F. G. (1988). Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24 19–28.
  • Gourévitch, B. and Eggermont, J. J. (2007). A nonparametric approach for detection of bursts in spike trains. J. Neurosci. Methods 160 349–358.
  • Grün, S., Diesmann, M. and Aertsen, A. (2002). “Unitary Events” in multiple single-neuron activity. II. Non-Stationary data. Neural Comput. 14 81–119.
  • Grün, S., Riehle, A. and Diesmann, M. (2003). Effect of cross-trial nonstationarity on joint-spike events. Biol. Cybernet. 88 335–351.
  • Grün, S. and Rotter, S., eds. (2010). Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience 7. Springer, New York.
  • Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. M. and Graybiel, A. M. (2013). Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500 575–579.
  • Hušková, M. and Slabý, A. (2001). Permutation tests for multiple changes. Kybernetika (Prague) 37 605–622.
  • Johnson, D. H. (1996). Point process models of single-neuron discharges. J. Comput. Neurosci. 3 275–299.
  • Jones, M. C., Marron, J. S. and Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. J. Amer. Statist. Assoc. 91 401–407.
  • Kass, R. E., Ventura, V. and Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. J. Neurophysiol. 94 8–25.
  • Kendall, D. G. and Kendall, W. S. (1980). Alignments in two-dimensional random sets of points. Adv. in Appl. Probab. 12 380–424.
  • Legéndy, C. R. and Salcman, M. (1985). Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol. 53 926–939.
  • Messer, M., Kirchner, M., Schiemann, J., Roeper, J., Neininger, R. and Schneider, G. (2014). Supplement to “A multiple filter test for the detection of rate changes in renewal processes with varying variance.” DOI:10.1214/14-AOAS782SUPP.
  • Mileykovskiy, B. and Morales, M. (2011). Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear. J. Neurosci. 31 7471–7476.
  • Muhsal, B. (2013). Change-point methods for multivariate autoregressive models and multiple structural breaks in the mean. Dissertation, available at http://nbn-resolving.org/urn:nbn:de:swb:90-355368.
  • Nawrot, M. P., Aertsen, A. and Rotter, S. (1999). Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity. J. Neurosci. Methods 94 81–92.
  • Nawrot, M. P., Boucsein, C., Rodriguez Molina, V., Riehla, A., Aertsen, A. and Rotter, S. (2008). Measurement of variability dynamics in cortical spike trains. Journal of Neuroscience Methods 169 347–390.
  • Perkel, D. H., Gerstein, G. L. and Moore, G. P. (1967a). Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys. J. 7 391–417.
  • Perkel, D. H., Gerstein, G. L. and Moore, G. P. (1967b). Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7 419–440.
  • Petrov, V. V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Clarendon, Oxford.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., Agid, Y., DeLong, M. R. and Obeso, J. A. (2010). Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat. Rev., Neurosci. 11 760–772.
  • Rieke, F., Warland, D., de Ruyter van Steveninck, R. and Bialek, W. (1999). Spikes: Exploring the Neural Code. MIT Press, Cambridge, MA.
  • Schiemann, J., Klose, V., Schlaudraff, F., Bingmer, M., Seino, S., Magill, P. J., Schneider, G., Liss, B. and Roeper, J. (2012). K-ATP channels control in vivo burst firing of dopamine neurons in the medial substantia nigra and novelty-induced behavior. Nat. Neurosci. 15 1272–1280.
  • Schneider, G. (2008). Messages of oscillatory correlograms: A spike train model. Neural Comput. 20 1211–1238.
  • Shimazaki, H. and Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural Comput. 19 1503–1527.
  • Staude, B., Rotter, S. and Grün, S. (2008). Can spike coordination be differentiated from rate covariation? Neural Comput. 20 1973–1999.
  • Steinebach, J. and Eastwood, V. R. (1995). On extreme value asymptotics for increments of renewal processes. J. Statist. Plann. Inference 45 301–312.
  • Steinebach, J. and Zhang, H. Q. (1993). On a weighted embedding for pontograms. Stochastic Process. Appl. 47 183–195.
  • Tokdar, S., Xi, P., Kelly, R. C. and Kass, R. E. (2010). Detection of bursts in extracellular spike trains using hidden semi-Markov point process models. J. Comput. Neurosci. 29 203–212.

Supplemental materials

  • Supplementary material: Supplement to “A multiple filter test for the detection of rate changes in renewal processes with varying variance”. We provide the R-Code for the multiple filter algorithm.