The Annals of Applied Statistics

Modeling the dynamics of biomarkers during primary HIV infection taking into account the uncertainty of infection date

J. Drylewicz, J. Guedj, D. Commenges, and R. Thiébaut

Full-text: Open access


During primary HIV infection, the kinetics of plasma virus concentrations and CD4+ cell counts is very complex. Parametric and nonparametric models have been suggested for fitting repeated measurements of these markers. Alternatively, mechanistic approaches based on ordinary differential equations have also been proposed. These latter models are constructed according to biological knowledge and take into account the complex nonlinear interactions between viruses and cells. However, estimating the parameters of these models is difficult. A main difficulty in the context of primary HIV infection is that the date of infection is generally unknown. For some patients, the date of last negative HIV test is available in addition to the date of first positive HIV test (seroconverters). In this paper we propose a likelihood-based method for estimating the parameters of dynamical models using a population approach and taking into account the uncertainty of the infection date. We applied this method to a sample of 761 HIV-infected patients from the Concerted Action on SeroConversion to AIDS and Death in Europe (CASCADE).

Article information

Ann. Appl. Stat., Volume 4, Number 4 (2010), 1847-1870.

First available in Project Euclid: 4 January 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Dynamical model nonlinear models ordinary differential equations HIV dynamics primary infection


Drylewicz, J.; Guedj, J.; Commenges, D.; Thiébaut, R. Modeling the dynamics of biomarkers during primary HIV infection taking into account the uncertainty of infection date. Ann. Appl. Stat. 4 (2010), no. 4, 1847--1870. doi:10.1214/10-AOAS364.

Export citation


  • Anderson, R. and May, R. (1991). Infectious Diseases of Humans. Oxford Univ. Press.
  • Asquith, B. and McLean, A. (2007). In vivo CD8+ T cell control of immunodeficiency virus infection in humans and macaques. Proc. Natl. Acad. Sci. USA 104 6365–6370.
  • Barbosa, P., Charneau, P., Dumey, N. and Clavel, F. (1994). Kinetic analysis of HIV-1 early replicative steps in a coculture system. AIDS Research and Human Retroviruses 10 53–59.
  • Berlizov, A. and Zhmudsky, A. (1999). The recursive adaptive quadrature in MS Fortran-77. Arxiv preprint. Available at arXiv:physics/9905035.
  • Berman, S. (1990). A stochastic model for the distribution of HIV latency time based on T4 counts. Biometrika 77 733–741.
  • Burg, D., Rong, L., Neumann, A. and Dahari, H. (2009). Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. J. Theoret. Biol. 259 751–759.
  • Cao, J., Fussmann, G. and Ramsay, J. (2008). Estimating a predator–prey dynamical model with the parameter cascades method. Biometrics 64 959–967.
  • CASCADE, C. (2003). Determinants of survival following HIV-1 seroconversion after the introduction of HAART: Results from CASCADE. The Lancet 362, 9392, 1267–1274.
  • Chun, T., Carruth, L., Shen, X., Taylor, H. et al. (1997). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387 183–188.
  • Ciupe, M., Bivort, B., Bortz, D. and Nelson, P. (2006). Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200 1–27.
  • Commenges, D., Jacqmin-Gadda, H., Proust, C. and Guedj, J. (2006). A Newton-like algorithm for likelihood maximization: The robust variance scoring algorithm. Available at arXiv:math.ST/0610402.
  • Commenges, D., Sayyareh, A., Letenneur, L., Guedj, J. and Bar-Hen, A. (2008). Estimating a difference of Kullback–Leibler risks using a normalized difference of AIC. Ann. Appl. Statist. 2 1123–1142.
  • Davenport, M., Zhang, L., Shiver, J., Casmiro, D., Ribeiro, R. and Perelson, A. (2006). Influence of peak viral load on the extent of CD4+ T-cell depletion in simian HIV infection. JAIDS Journal of Acquired Immune Deficiency Syndromes 41 259.
  • De Boer, R. and Perelson, A. (1998). Target cell limited and immune control models of HIV infection: A comparison. J. Theoret. Biol. 190 201–214.
  • DeGruttola, V., Lange, N. and Dafni, U. (1991). Modeling the progression of HIV infection. J. Amer. Statist. Assoc. 86 569–577.
  • Desquilbet, L., Goujard, C., Rouzioux, C., Sinet, M., Chaix, M., Sereni, D., Boufassa, F., Delfraissy, J., Meyer, L., PRIMO and Groups, S. S. (2004). Does transient HAART during primary HIV-1 infection lower the virological set-point? AIDS 18 2361–2369.
  • Dimitrov, D., Willey, R., Sato, H., Chang, L., Blumenthal, R. and Martin, M. (1993). Quantitation of human immunodeficiency virus type 1 infection kinetics. Journal of Virology 67 2182–2190.
  • Drylewicz, J., Commenges, D. and Thiébaut, R. (2010). Score tests for exploring complex models: Application to HIV dynamical models. Biometrical Journal 52 10–21.
  • Dubin, N., Berman, S., Marmor, M., Tindall, B., Des Jarlais, D. and Kim, M. (1994). Estimation of time since infection using longitudinal disease-marker data. Stat. Med. 13 231–244.
  • Faulkner, N., Lane, B., Bock, P. and Markovitz, D. (2003). Protein phosphatase 2A enhances activation of human immunodeficiency virus type 1 by phorbol myristate acetate. Journal of Virology 77 2276–2281.
  • Fellay, J., Shianna, K., Ge, D., Colombo, S., Ledergerber, B., Weale, M., Zhang, K., Gumbs, C., Castagna, A., Cossarizza, A. et al. (2007). A whole-genome association study of major determinants for host control of HIV-1. Science 317 944–947.
  • Fidler, S., Fox, J., Touloumi, G., Pantazis, N., Porter, K., Babiker, A., Weber, J. et al. (2007). Slower CD4 cell decline following cessation of a 3 month course of HAART in primary HIV infection: Findings from an observational cohort. AIDS 21 1283–1291.
  • Fidler, S., Fraser, C., Fox, J., Tamm, N., Griffin, J. and Weber, J. (2006). Comparative potency of three antiretroviral therapy regimes in primary HIV infection. AIDS 20 247–252.
  • Fiebig, E., Wright, D., Rawal, B., Garrett, P., Schumacher, R., Peddada, L., Heldebrant, C., Smith, R., Conrad, A., Kleinman, S. et al. (2003). Dynamics of HIV viremia and antibody seroconversion in plasma donors: Implications for diagnosis and staging of primary HIV infection. AIDS 17 1871–1879.
  • Filter, R., Xia, X. and Gray, C. (2005). Dynamic HIV/AIDS parameter estimation with application to a vaccine readiness study in Southern Africa. IEEE Transactions on Biomedical Engineering 52 784–791.
  • Geskus, R. (2000). On the inclusion of prevalent cases in HIV/AIDS natural history studies through a marker-based estimate of time since seroconversion. Stat. Med. 19 1753–1769.
  • Geskus, R., Prins, M., Hubert, J., Miedema, F., Berkhout, B., Rouzioux, C., Delfraissy, J. and Meyer, L. (2007). The HIV RNA setpoint theory revisited. Retrovirology 4 65–74.
  • Guedj, J., Thiébaut, R. and Commenges, D. (2007a). Maximum likelihood estimation in dynamical models of HIV. Biometrics 63 1198–1206.
  • Guedj, J., Thiébaut, R. and Commenges, D. (2007b). Practical identifiability of HIV dynamics models. Bull. Math. Biol. 69 2493–2513.
  • Haase, A. (1999). Population biology of HIV-1 infection: Viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annual Reviews in Immunology 17 625–656.
  • Hecht, F., Wang, L., Collier, A., Little, S., Markowitz, M., Margolick, J., Kilby, J., Daar, E., Conway, B., Holte, S. et al. (2006). A multicenter observational study of the potential benefits of initiating combination antiretroviral therapy during acute HIV infection. Journal of Infectious Diseases 194 725–733.
  • Huang, Y. (2007). Modeling the short-, middle- and long-term viral load responses for comparing estimated dynamic parameters. Biometrical Journal 49 429–440.
  • Huang, Y., Liu, D. and Wu, H. (2006). Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics 62 413–423.
  • Huang, Y. and Wu, H. (2006). A Bayesian approach for estimating antiviral efficacy in HIV dynamic models. J. Appl. Statist. 33 155–174.
  • Kaufmann, G., Cunningham, P., Kelleher, A., Zaunders, J., Carr, A., Vizzard, J., Law, M., Cooper, D. et al. (1998). Patterns of viral dynamics during primary human immunodeficiency virus type 1 infection. Journal of Infectious Diseases 178 1812–1815.
  • Kiernan, R., Marshall, J., Bowers, R., Doherty, R. and McPhee, D. (1990). Kinetics of HIV-1 replication and intracellular accumulation of particles in HTLV-I-transformed cells. AIDS Research and Human Retroviruses 6 743–752.
  • Levy, J., Ramachandran, B., Barker, E., Guthrie, J., Elbeik, T. and Coffin, J. (1996). Plasma viral load, CD4+ cell counts, and HIV-1 production by cells. Science 271 670–671.
  • Lindback, S., Karlsson, A., Mittler, J., Blaxhult, A., Carlsson, M., Briheim, G., Sonnerborg, A. and Gaines, H. (2000). Viral dynamics in primary HIV-1 infection. Karolinska institutet primary HIV infection study group. AIDS 14 2283–2291.
  • Little, S., McLean, A., Spina, C., Richman, D. and Havlir, D. (1999). Viral dynamics of acute HIV-1 infection. Journal of Experimental Medicine 190 841–850.
  • Louis, T. (1982). Finding the observed Information matrix when using the EM algorithm. J. Roy. Statist. Soc. Ser. B 44 226–233.
  • McLean, A. and Michie, C. (1995). In vivo estimates of division and death rates of human t lymphocytes. Proc. Natl. Acad. Sci. USA 92 3707–3711.
  • Mellors, J., Kingsley, L., Rinaldo, C., Todd, J., Hoo, B., Kokka, R. and Gupta, P. (1995). Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Annals of Internal Medicine 122 573–579.
  • Munoz, A., Carey, V., Taylor, J., Chmiel, J., Kingsley, L., Van Raden, M. and Hoover, D. (1992). Estimation of time since exposure for a prevalent cohort. Stat. Med. 11 939–952.
  • Murray, J., Kaufmann, G., Kelleher, A. and Cooper, D. (1998). A model of primary HIV-1 infection. Mathematical Biosciences 154 57–85.
  • Nowak, M., Bonhoeffer, S., Shaw, G. and May, R. (1997a). Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations. Journal of Theoretical Biology 184 203–217.
  • Nowak, M., Lloyd, A., Vasquez, G., Wiltrout, T., Wahl, L., Bischofberger, N., Williams, J., Kinter, A., Fauci, A., Hirsch, V. et al. (1997b). Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection. Journal of Virology 71 7518–7525.
  • Pantazis, N., Touloumi, G., Walker, A. and Babiker, A. (2005). Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop-outs. J. Roy. Statist. Soci. Ser. C 54 405–423.
  • Perelson, A. (2002). Modelling viral and immune system dynamics. Nature Reviews Immunology 2 28–36.
  • Perelson, A., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M. and Ho, D. (1997). Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387 188–191.
  • Perelson, A., Neumann, A., Markowitz, M., Leonard, J. and Ho, D. (1996). Viral dynamics in human immunodeficiency virus type 1 infection. Science 271, 1582–1586.
  • Phillips, A. (1996). Reduction of HIV concentration during acute infection: Independence from a specific immune response. Science 271 497–499.
  • Putter, H., Heisterkamp, S., Lange, J. and de Wolf, F. (2002). A Bayesian approach to parameter estimation in HIV dynamical models. Stat. Med. 21 2199–2214.
  • Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J., Markowitz, M., Moore, J., Perelson, A. and Ho, D. (1999). Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. The Lancet 354 1782–1786.
  • Ribeiro, R., Qin, L., Chavez, L., Li, D., Self, S. and Perelson, A. (2010). Estimation of the initial viral growth rate and the basic reproductive number during acute HIV-1 infection. Journal of Virology 84 6096–6102.
  • Samson, A., Lavielle, M. and Mentré, F. (2006). Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model. Comput. Statist. Data Anal. 51 1562–1574.
  • Stafford, M., Cao, Y., Ho, D., Corey, L. and Perelson, A. (2000). Modeling plasma virus concentration and CD4+ T cell kinetics during primary HIV infection. Journal of Theoretical Biology 203 285–301.
  • Thiébaut, R., Guedj, J., Jacqmin-Gadda, H., Chêne, G., Trimoulet, P., Neau, D. and Commenges, D. (2006). Estimation of dynamical model parameters taking into account undetectable marker values. BMC Medical Research Methodology 6 1–10.
  • Thiébaut, R., Jacqmin-Gadda, H., Leport, C., Katlama, C., D., C., Le Moing, V., Morlat, P., Chene, G. and the APROCO Study Group (2003). Bivariate longitudinal model for the analysis of the evolution of HIV RNA and CD4 cell count in HIV infection taking into account left censoring of HIV RNA measures. Journal of Biopharmaceutical Statistics 13 271–282.
  • Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature 118 558–560.
  • Vrisekoop, N., den Braber, I., de Boer, A., Ruiter, A., Ackermans, M., van der Crabben, S., Schrijver, E., Spierenburg, G., Sauerwein, H., Hazenberg, M. et al. (2008). Sparse production but preferential incorporation of recently produced naïve T cells in the human peripheral pool. Proc. Natl. Acad. Sci. 105 6115–6120.
  • Wick, D. (1999). The disappearing CD4+ T cells in HIV infection: A case of over-stimulation? Journal of Theoretical Biology 197 507–516.
  • Wilson, D., Mattapallil, J., Lay, M., Zhang, L., Roederer, M. and Davenport, M. (2007). Estimating the infectivity of CCR5-tropic simian immunodeficiency virus SIVmac251 in the gut? Journal of Virology 81 8025–8029.
  • Wu, H. and Ding, A. (1999). Population HIV-1 dynamics in vivo: Applicable models and inferential tools for virological data from AIDS clinical trials. Biometrics 55 410–418.
  • Wu, H., Zhu, H., Miao, H. and Perelson, A. (2008). Parameter identifiability and estimation of HIV/AIDS dynamic models. Bull. Math. Biol. 70 785–799.