The Annals of Applied Statistics

Hidden Markov models for alcoholism treatment trial data

Kenneth E. Shirley, Dylan S. Small, Kevin G. Lynch, Stephen A. Maisto, and David W. Oslin

Full-text: Open access


In a clinical trial of a treatment for alcoholism, a common response variable of interest is the number of alcoholic drinks consumed by each subject each day, or an ordinal version of this response, with levels corresponding to abstinence, light drinking and heavy drinking. In these trials, within-subject drinking patterns are often characterized by alternating periods of heavy drinking and abstinence. For this reason, many statistical models for time series that assume steady behavior over time and white noise errors do not fit alcohol data well. In this paper we propose to describe subjects’ drinking behavior using Markov models and hidden Markov models (HMMs), which are better suited to describe processes that make sudden, rather than gradual, changes over time. We incorporate random effects into these models using a hierarchical Bayes structure to account for correlated responses within subjects over time, and we estimate the effects of covariates, including a randomized treatment, on the outcome in a novel way. We illustrate the models by fitting them to a large data set from a clinical trial of the drug Naltrexone. The HMM, in particular, fits this data well and also contains unique features that allow for useful clinical interpretations of alcohol consumption behavior.

Article information

Ann. Appl. Stat., Volume 4, Number 1 (2010), 366-395.

First available in Project Euclid: 11 May 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Hidden Markov models alcoholism clinical trial longitudinal data mixed effects models alcohol relapse MCMC for mixture models


Shirley, Kenneth E.; Small, Dylan S.; Lynch, Kevin G.; Maisto, Stephen A.; Oslin, David W. Hidden Markov models for alcoholism treatment trial data. Ann. Appl. Stat. 4 (2010), no. 1, 366--395. doi:10.1214/09-AOAS282.

Export citation


  • Albert, P. (1999). A mover-stayer model for longitudinal marker data. Biometrics 55 1252–1257.
  • Albert, P. (2000). A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics 56 602–608.
  • Albert, P. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58 631–642.
  • Altman, R. J. (2007). Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting. J. Amer. Statist. Assoc. 102 201–210.
  • Anton, R. F., et al. (2006). Combined pharmacotherapies and behavioral interventions for alcohol dependence. J. Amer. Medical Assoc. 295 2003–2017.
  • Cappe, O., Moulines, E. and Ryden, T. (2005). Inference in Hidden Markov Models.Springer, New York.
  • Cook, R. J., Kalbfleisch, J. D. and Yi, G. Y. (2002). A generalized mover-stayer model for panel data. Biostatistics 3 407–420.
  • Cox, D. R. (1981). Statistical analysis of time series: Some recent developments. Scand. J. Statist. 8 93–115.
  • Gelman, A. G., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd ed. Chapman & Hall/CRC, New York.
  • Gelman, A. G. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge Univ. Press, New York.
  • Humphreys, K. (1998). The latent Markov chain with multivariate random effects. Sociological Methods and Research 26 269–299.
  • Longford, N. T., Ely, M., Hardy, R. and Wadsworth, M. E. J. (2000). Handling missing data in diaries of alcohol consumption. J. Roy. Statist. Soc. Ser. A 163 381–402.
  • MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman & Hall, New York.
  • Maisto, S. A., Pollock, N. K., Cornelius, J. R., Lynch, K. G. and Martin, C. S. (2003). Alcohol relapse as a function of relapse definition in a clinical sample of adolescents. Addictive Behaviors 28 449–459.
  • Marlatt, G. A. and Gordon, J. R. (1985). Relapse Prevention: Maintenance Strategies in the Treatment of Addictive Behaviors. uilford Press, New York.
  • McKay, J. R., Franklin, T. R., Patapis, N. and Lynch, K. G. (2006). Conceptual, methodological, and analytical issues in the study of relapse. Clinical Psychology Review 26 109–127.
  • Oslin, D. W., Lynch, K. G., Pettinati, H. M., Kampman, K. M., Gariti, P., Gelfand, L., Ten Have, T., Wortman, S., Dundon, W., Dackis, C., Volpicelli, J. R. and O’Brien, C. P. (2008). A placebo-controlled randomized clinical trials of naltrexone in the context of different levels of psychosocial intervention. Alcoholism: Clinical and Experimental Research 32 1299–1308.
  • Rabiner, L. R. and Juang, B. H. (1986). An introduction to hidden markov models. IEEE Acoustics, Speech, and Signal Processing 3 4–16.
  • Scott, S. (2002). Bayesian methods for hidden Markov models: Recursive computing in the 21st century. J. Amer. Statist. Assoc. 97 337–351.
  • Scott, S., James, G. M. and Sugar, C. A. (2005). Hidden Markov models for longitudinal comparisons. J. Amer. Statist. Assoc. 100 359–369.
  • Seltman, H. J. (2002). Hidden Markov models for analysis of biological rhythm data. In Case Studies in Bayesian Statistics 5 397–405. Springer, New York.
  • Shirley, K. E., Small, D. S., Lynch, K. G., Maisto, S. A. and Oslin, D. W. (2009). Supplement to “Hidden Markov models for alcoholism treatment trial data.” DOI: 10.1214/09-AOAS282SUPP.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. Roy. Statist. Soc. Ser. B 64 583–639.
  • Velicer, W. F., Martin, R. A. and Collins, L. M. (1996). Latent transition analysis for longitudinal data. Addiction 91 (Supplement) S197–S209.
  • Wang, S. J., Winchell, C. J., McCormick, C. G., Nevius, S. E. and O’Neill, R. T. (2002). Short of complete abstinence: An analysis exploration of multiple drinking episodes in alcoholism treatment trials. Alcoholism: Clinical and Experimental Research 26 1803–1809.
  • Witkiewitz, K. and Marlatt, G. A. (2004). Relapse prevention for alcohol and drug problems. American Psychologist 59 224–235.

Supplemental materials