The Annals of Applied Statistics

Sequential Monte Carlo pricing of American-style options under stochastic volatility models

Bhojnarine R. Rambharat and Anthony E. Brockwell

Full-text: Open access

Abstract

We introduce a new method to price American-style options on underlying investments governed by stochastic volatility (SV) models. The method does not require the volatility process to be observed. Instead, it exploits the fact that the optimal decision functions in the corresponding dynamic programming problem can be expressed as functions of conditional distributions of volatility, given observed data. By constructing statistics summarizing information about these conditional distributions, one can obtain high quality approximate solutions. Although the required conditional distributions are in general intractable, they can be arbitrarily precisely approximated using sequential Monte Carlo schemes. The drawback, as with many Monte Carlo schemes, is potentially heavy computational demand. We present two variants of the algorithm, one closely related to the well-known least-squares Monte Carlo algorithm of Longstaff and Schwartz [The Review of Financial Studies 14 (2001) 113–147], and the other solving the same problem using a “brute force” gridding approach. We estimate an illustrative SV model using Markov chain Monte Carlo (MCMC) methods for three equities. We also demonstrate the use of our algorithm by estimating the posterior distribution of the market price of volatility risk for each of the three equities.

Article information

Source
Ann. Appl. Stat., Volume 4, Number 1 (2010), 222-265.

Dates
First available in Project Euclid: 11 May 2010

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1273584454

Digital Object Identifier
doi:10.1214/09-AOAS286

Mathematical Reviews number (MathSciNet)
MR2758171

Zentralblatt MATH identifier
1189.62164

Keywords
Optimal stopping dynamic programming arbitrage risk-neutral decision latent volatility volatility risk premium grid sequential Monte Carlo Markov chain Monte Carlo

Citation

Rambharat, Bhojnarine R.; Brockwell, Anthony E. Sequential Monte Carlo pricing of American-style options under stochastic volatility models. Ann. Appl. Stat. 4 (2010), no. 1, 222--265. doi:10.1214/09-AOAS286. https://projecteuclid.org/euclid.aoas/1273584454


Export citation

References

  • Bakshi, G. and Kapadia, N. (2003a). Delta-hedged gains and the negative market volatility risk premium. The Review of Financial Studies 16 527–566.
  • Bakshi, G. and Kapadia, N. (2003b). Volatility risk premiums embedded in individual equity options: Some new insights. The Journal of Derivatives Fall 11 45–54.
  • Bellman, R. (1953). An Introduction to the Theory of Dynamic Programming. Rand Corporation, Santa Monica, CA.
  • Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, Vol. 1, 3rd ed. Athena Scientific, Belmont, MA.
  • Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, Vol. 2, 3rd ed. Athena Scientific, Belmont, MA.
  • Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy 81 637–659.
  • Brennan, M. J. and Schwartz, E. S. (1977). The valuation of American put options. The Journal of Finance 32 449–462.
  • Broadie, M. and Glasserman, P. (1997). Pricing American-style securities using simulation. J. Econ. Dynam. Control 21 1323–1352.
  • Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.
  • Brockwell, A. and Kadane, J. (2003). A gridding method for Bayesian sequential decision problems. J. Comput. Graph. Statist. 12 566–584.
  • Carr, P., Jarrow, R. and Myneni, R. (1992). Alternative characterizations of American put options. Math. Finance 2 87–106.
  • Carrière, J. (1996). Valuation of the early-exercise price for derivative securities using simulations and splines. Insurance Math. Econom. 19 19–30.
  • Chernov, M. and Ghysels, E. (2000). A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation. Journal of Financial Economics 56 407–458.
  • Chernov, M., Gallant, A. R., Ghysels, E. and Tauchen, G. (2003). Alternative models for stock price dynamics. J. Econometrics 116 225–257.
  • Clarke, N. and Parrott, K. (1999). Multigrid for American option pricing with stochastic volatility. Applied Mathematical Finance 6 177–195.
  • Clement, E., Lamberton, D. and Protter, P. (2002). An analysis of a least squares regression method for American option pricing. Finance Stoch. 6 449–471.
  • DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.
  • Doucet, A., de Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo Methods in Practice, 1st ed. Springer, New York.
  • Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and option prices. The Journal of Finance 59 1367–1404.
  • Finucane, T. J. and Tomas, M. J. (1997). American stochastic volatility call option pricing: A lattice based approach. Review of Derivatives Research 1 183–201.
  • Fouque, J. P., Papanicolaou, G. and Sircar, K. R. (2000). Derivatives in Financial Markets with Stochastic Volatility. Cambridge Univ. Press, Cambridge.
  • Gallant, A., Hsieh, D. and Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. J. Econometrics 81 159–192.
  • Geske, R. and Johnson, H. (1984). The American put option valued analytically. The Journal of Finance 39 1511–1524.
  • Ghysels, E., Harvey, A. and Renault, E. (1996). Stochastic volatility. In Statistical Methods in Finance. Handbook of Statistics 14. Elsevier, Amsterdam, The Netherlands.
  • Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer, New York.
  • Guan, L. K. and Guo, X. (2000). Pricing American options with stochastic volatility: Evidence from S&P 500 futures options. The Journal of Futures Markets 20 625–659.
  • Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies 6 327–343.
  • Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatility. The Journal of Finance 42 281–300.
  • Jacquier, E., Polson, N. G. and Rossi, P. E. (1994). Bayesian analysis of stochastic volatility models. J. Bus. Econom. Statist. 12 371–389.
  • Jacquier, E., Polson, N. G. and Rossi, P. E. (2004). Bayesian analysis of stochastic volatility models with fat tails and correlated errors. J. Econometrics 122 185–212.
  • Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York.
  • Karatzas, I. and Shreve, S. E. (1998). Methods of Mathematical Finance. Springer, New York.
  • Kim, S., Shephard, N. and Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econom. Stud. 65 361–393.
  • Kitagawa, G. (1987). Non-Gaussian state-space modeling of nonstationary time series. J. Amer. Statist. Assoc. 82 1032–1063.
  • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian non-linear state space models. J. Comput. Graph. Statist. 5 1–25.
  • Kitagawa, G. and Sato, S. (2001). Monte Carlo smoothing and self-organizing state-space model. In Sequential Monte Carlo Methods in Practice 177–196. Springer, New York.
  • Kloeden, P. E. and Platen, E. (2000). Numerical Solution of Stochastic Differential Equations, 1st ed. Springer, New York.
  • Kotecha, J. and Djuric, P. (2003). Gaussian particle filtering. IEEE Trans. Signal Process. 51 2592–2601.
  • Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo Methods in Practice 197–217. Springer, New York.
  • Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. The Review of Financial Studies 14 113–147.
  • Melenberg, B. and Werker, B. J. (2001). The implicit price of volatility risk: An empirical analysis. Technical report, Tilburg Univ., The Netherlands.
  • Merton, R. C. (1973). The theory of rational option pricing. Bell Journal of Economics and Management Science 4 141–183.
  • Musiela, M. and Rutkowski, M. (1998). Martingale Methods in Financial Modeling. Springer, New York.
  • Myneni, R. (1992). The pricing of the American option. Ann. Appl. Probab. 2 1–23.
  • Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of Financial Economics 63 3–50.
  • Pastorello, S., Renault, E. and Touzi, N. (2000). Statistical inference for random variance option pricing. J. Bus. Econom. Statist. 18 358–367.
  • Pitt, M. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. American Statist. Assoc. 94 590–599.
  • Rambharat, B. R. (2005). Valuation methods for American derivatives in a stochastic volatility framework. Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh.
  • Rambharat, B. R. and Brockwell, A. E. (2009). Supplement to “Sequential Monte Carlo pricing of American-style options under stochastic volatility models.” DOI: 10.1214/09-AOAS286SUPP.
  • Renault, E. and Touzi, N. (1996). Option hedging and implied volatilities in a stochastic volatility model. Math. Finance 6 279–302.
  • Rogers, L. (2002). Monte Carlo valuation of American options. Math. Finance 12 271–286.
  • Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming. Academic Press, New York.
  • Schervish, M. J. (1995). Theory of Statistics, 1st ed. Springer-Verlag, New York.
  • Scott, L. (1987). Option pricing when the variance changes randomly. Journal of Financial and Quantitative Analysis 22 419–438.
  • Seber, G. and Wild, C. (2003). Nonlinear Regression, 1st ed. Wiley, New York.
  • Sorenson, H. and Stubberud, A. (1968). Non-linear filtering by approximation of the a posteriori density. Internat. J. Control 8 33–51.
  • Stein, E. and Stein, C. (1991). Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies 4 727–752.
  • Sullivan, M. A. (2000). Valuing American put options using Gaussian quadrature. Review of Financial Studies 13 75–94.
  • Tsitsiklis, J. N. and Van Roy, B. (2001). Regression methods for pricing complex American-style derivatives. IEEE Transactions on Neural Networks 12 694–703.
  • Tzavalis, E. and Wang, S. (2003). Pricing American options under stochastic volatility: A new method using Chebyshev polynomials to approximate the early exercise boundary. Working paper, Queen Mary Univ. London.
  • Wilmott, P., Howison, S. and Dewynne, J. (1995). The Mathematics of Financial Derivatives: A Student Introduction. Cambridge Univ. Press, Cambridge.
  • Yu, J. (2005). On leverage in a stochastic volatility model. J. Econometrics 127 165–178.
  • Zhang, Z. and Lim, K.-G. (2006). A non-lattice pricing model of American options under stochastic volatility. The Journal of Futures Markets 26 417–448.

Supplemental materials