The Annals of Applied Statistics

Statistical modeling of the time course of tantrum anger

Peihua Qiu, Rong Yang, and Michael Potegal

Full-text: Open access

Abstract

Although anger is an important emotion that underlies much overt aggression at great social cost, little is known about how to quantify anger or to specify the relationship between anger and the overt behaviors that express it. This paper proposes a novel statistical model which provides both a metric for the intensity of anger and an approach to determining the quantitative relationship between anger intensity and the specific behaviors that it controls. From observed angry behaviors, we reconstruct the time course of the latent anger intensity and the linkage between anger intensity and the probability of each angry behavior. The data on which this analysis is based consist of observed tantrums had by 296 children in the Madison WI area during the period 1994–1996. For each tantrum, eight angry behaviors were recorded as occurring or not within each consecutive 30-second unit. So, the data can be characterized as a multivariate, binary, longitudinal (MBL) dataset with a latent variable (anger intensity) involved. Data such as these are common in biomedical, psychological and other areas of the medical and social sciences. Thus, the proposed modeling approach has broad applications.

Article information

Source
Ann. Appl. Stat., Volume 3, Number 3 (2009), 1013-1034.

Dates
First available in Project Euclid: 5 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1254773276

Digital Object Identifier
doi:10.1214/09-AOAS242

Mathematical Reviews number (MathSciNet)
MR2750384

Zentralblatt MATH identifier
1196.62149

Keywords
Anger categorical data emotion generalized estimating equations latent variables longitudinal data multiple binary responses parametric logistic regression

Citation

Qiu, Peihua; Yang, Rong; Potegal, Michael. Statistical modeling of the time course of tantrum anger. Ann. Appl. Stat. 3 (2009), no. 3, 1013--1034. doi:10.1214/09-AOAS242. https://projecteuclid.org/euclid.aoas/1254773276


Export citation

References

  • Beck, R. and Fernandez, E. (1998). Cognitive-behavioral self-regulation of the frequency, duration and intensity of anger. Journal of Psychopathology and Behavioral Assessment 20 217–229.
  • Burgess, A. W., Harner, H., Baker, T., Hartman, C. R. and Lole, C. (2001). Batterers stalking patterns. Journal of Family Violence 16 309–321.
  • Cook, R. D. and Weisberg, S. (1999). Applied Regression Including Computing and Graphics. Wiley, New York.
  • Cui, J. and Qian, G. (2007). Selection of working correlation structure and best model in GEE analyses of longitudinal data. Comm. Statist. Simulation Comput. 36 987–996.
  • Curtis, L. A. (1974). Criminal Violence: National Patterns and Behavior. Lexington Books, Lexington, MA.
  • Diggle, P. J. (1988). An approach to the analysis of repeated measurements. Biometrics 44 959–971.
  • Diggle, P. J., Liang, K.-Y. and Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford Univ. Press, New York.
  • Frijda, N. H., Mesquita, B., Sonnemans, J. and Van Goozen, S. (1991). The duration of affective phenomena or emotions, sentiments, and passions. In International Review of Studies of Emotion 1 (F. T. Strongman, ed.) 187–226. Wiley, Chichester.
  • Frijda, N. H., Ortony, A., Sonnemans, J. and Clore, G. (1992). The complexity of intensity. In Emotion (M. Clark et al., eds.) 60–89. Sage, Newbury Park, CA.
  • Hosmer, D. W. and Lemeshow, S. (1989). Applied Logistic Regression. Wiley, New York.
  • Jacobson, N. S., Gottman, J. M., Waltz, J., Rushe, R., Babcock, J. and Holtzworth-Munroe, A. (1994). Affect, verbal content, and psychophysiology in the arguments of couples with a violent husband. Journal of Consulting and Clinical Psychology 62 982–988.
  • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38 963–974.
  • Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13–22.
  • Lin, X. and Carroll, R. (2001). Semiparametric regression for clustered data using generalized estimating equations. J. Amer. Statist. Assoc. 96 1045–1056.
  • Lindstrom, M. J. and Bates, D. M. (1988). Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J. Amer. Statist. Assoc. 83 1014–1022.
  • Lupton, D. (2002). Road rage: Drivers’ understandings and experiences. Journal of Sociology 38 275–290.
  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman & Hall, New York.
  • Pan, W. (2001). Akaike’s information criterion in generalized estimating equations. Biometrics 57 120–125.
  • Parker, D., Lajunen, T. and Summala, H. (2002). Anger and aggression among drivers in three European countries. Accident Analysis & Prevention 34 229–235.
  • Potegal, M. and Davidson, R. J. (2003). Temper tantrums in young children I: Behavioral composition. Journal of Developmental and Behavioral Pediatrics 24 140–147.
  • Potegal, M., Kosorok, M. and Davidson, R. J. (1996). The time course of angry behavior in the temper tantrums of young children. Ann. New York Acad. Sci. 794 31–45.
  • Potegal, M., Kosorok, M. and Davidson, R. J. (2003). Temper tantrums in young children II: Tantrum duration and temporal organization. Journal of Developmental and Behavioral Pediatrics 24 148–154.
  • Qiu, P. (2002). Fitting a semiparametric model based on two sources of information. Aust. N. Z. J. Stat. 44 87–97.
  • Qiu, P., Chappell, R., Obermeyer, W. and Benca, R. (1999). Modelling daily and subdaily cycles in rat sleep data. Biometrics 55 930–935.
  • Qiu, P., Yang, R. and Potegal, M. (2009). Supplement to “Statistical modeling of the time course of tantrum anger.” DOI: 10.1214/09-AOAS242SUPP.
  • Schumacher, J. A., Feldbau-Kohn, S., Slep, A., Smith, M. and Heyman, E. (2001). Risk factors for male-to-female partner physical abuse. Aggression & Violent Behavior 6 281–352.
  • Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semiparametric models. J. Amer. Statist. Assoc. 89 501–511.
  • Sonnemans, J. and Frijda, N. H. (1994). The structure of subjective emotional intensity. Cognition and Emotion 4 329–350.
  • Tsytsarev, S. V. and Grodnitzky, G. R. (1995). Anger and criminality. In Anger Disorders: Definition, Diagnosis, and Treatment (H. Kassinove, ed.) 91–108. Taylor & Francis, New York.
  • Underwood, M. K., Coie, J. D. and Herbsman, C. R. (1992). Display rules for anger and aggression in school-age children. Child Development 63 366–380.
  • Wu, H. L. and Zhang, J. T. (2002). Local polynomial mixed-effects models for longitudinal data. J. Amer. Statist. Assoc. 97 883–897.

Supplemental materials