The Annals of Applied Statistics

Streaming motion in Leo I

Bodhisattva Sen, Moulinath Banerjee, Michael Woodroofe, Mario Mateo, and Matthew Walker

Full-text: Open access

Abstract

Whether a dwarf spheroidal galaxy is in equilibrium or being tidally disrupted by the Milky Way is an important question for the study of its dark matter content and distribution. This question is investigated using 328 recent observations from the dwarf spheroidal Leo I. For Leo I, tidal disruption is detected, at least for stars sufficiently far from the center, but the effect appears to be quite modest. Statistical tools include isotonic and split point estimators, asymptotic theory, and resampling methods.

Article information

Source
Ann. Appl. Stat., Volume 3, Number 1 (2009), 96-116.

Dates
First available in Project Euclid: 16 April 2009

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1239888364

Digital Object Identifier
doi:10.1214/08-AOAS211

Mathematical Reviews number (MathSciNet)
MR2668701

Zentralblatt MATH identifier
1160.62367

Keywords
Asymptotic distributions bootstrap change point models dark matter dwarf spheroidal galaxies isotonic estimation permutation tests split points

Citation

Sen, Bodhisattva; Banerjee, Moulinath; Woodroofe, Michael; Mateo, Mario; Walker, Matthew. Streaming motion in Leo I. Ann. Appl. Stat. 3 (2009), no. 1, 96--116. doi:10.1214/08-AOAS211. https://projecteuclid.org/euclid.aoas/1239888364


Export citation

References

  • Banerjee, M. (2007). Likelihood based inference for monotone response models. Ann. Statist. 35 931–956.
  • Banerjee, M. and McKeague, I. W. (2007a). Confidence sets for split points in decision trees. Ann. Statist. 35 543–574.
  • Banerjee, M. and McKeague, I. W. (2007b). Estimating optimal step-function approximations to instantaneous hazard rates. Bernoulli 13 279–299.
  • Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions. Ann. Statist. 29 1699–1731.
  • Banerjee, M. and Wellner, J. A. (2005). Score statistics for current status data: Comparison with likelihood ratio and Wald statistics. Int. J. Biostat. 1 Article 3.
  • Binney, J. and Tremaine, S. (1987). Galactic Dynamics. Princeton Univ. Press, Princeton, NJ.
  • Byrd, G., Valtonen, M., McCall, M. and Innanen, K. (1994). Orbits of the Magellanic Clouds and Leo I in local group history. Astrophysical Journal 107 2055.
  • Feder, P. I. (1975). On asymptotic distribution theory in segmented regression problems—identified case. Ann. Statist. 3 49–83.
  • Groeneboom, P. and Wellner, J. A. (2001). On computing Chernoff’s distribution. J. Comput. Graph. Statist. 10 388–400.
  • Hinkley, D. (1971). Inference in two-phase regression. J. Amer. Statist. Assoc. 66 736–743.
  • Hušková, M. (1998). Estimators in the location model with gradual changes. Comment. Math. Univ. Carolin. 39 147–157.
  • Irwin, M. and Hatzidimitriou, D. (1995). Structural parameters for the Galactic dwarf spheroidals. Monthly Notices of the Royal Astronomical Society 277 1354–1378.
  • Kleyna, J., Wilkinson, M. I., Evans, N. W., Gilmore, G. and Frayn, C. (2002). Dark matter in dwarf spheroidals—II. Observations and modelling of Draco. Monthly Notices of the Royal Astronomical Society 330 792–806.
  • Kosorok, M. (2007). Bootstrapping the Grenander estimator. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honour of Professor Pranab K. Sen (N. Balakrishnan, E. Pena and M. Silvapulle, eds.) 289–292. IMS, Beachwood, OH.
  • Kulikov, V. N. and Lopuhaä, H. P. (2006). The behavior of the NPMLE of a decreasing density near the boundaries of the support. Ann. Statist. 34 742–768.
  • Lee, S. M. S. and Pun, M. C. (2006). On m out of n bootstrapping for nonstandard M-estimation with nuisance parameters. J. Amer. Statist. Assoc. 101 1185–1197.
  • Léger, C. and MacGibbon, B. (2006). On the bootstrap in cube root asymptotics. Canad. Statist. 34 29–44.
  • Mateo, M. L. (1998). Dwarf galaxies of the Local Group. Ann. Reviews of Astronomy and Astrophysics 36 435.
  • Mateo, M., Olszewski, E. W., Pryor, C., Welch, D. L. and Fischer, P. (1993). Astronomical Journal 105 510.
  • Mateo, M., Olszewski, E. W., Vogt, S. S. and Keane, M. J. (1998). Astronomical Journal 116 231.
  • Mateo, M., Olszewski, E. W. and Walker, M. G. (2008). The velocity dispersion profile of the remote dwarf spheroidal galaxy Leo I: A tidal hit and run? Astrophysical Journal 675 201.
  • Muñoz, R. R., Majewski, S. R. and Johnston, K. V. (2008). Modelling the structure and synamics of dwarf spheroidal galaxies with dark matter and tides. Astrophysical Journal 679 346.
  • Oh, K. S., Lin, D. N. C. and Aarseth, S. J. (1995). Astrophysical Journal 442 142.
  • Piatek, S. and Pryor, C. (1995). Astronomical Journal 109 1071.
  • Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, New York.
  • Sen, B., Banerjee, M. and Woodroofe, M. (2008). Inconsistency of bootstrap: The Grenander estimator. Unpublished manuscript.
  • Sen, B., Walker, M. G. and Woodroofe, M. (2008). On the unified method with nuisance parameters. Statist. Sinica. To appear.
  • Sohn, S. T. et al. (2007). Astrophysical Journal 663 96.
  • van der Vaart, A. W. and Wellner, J. A. (2000). Weak Convergence and Empirical Processes. Springer, New York.
  • Walker, M. G., Mateo, M., Olszewski, E. W., Bernstein, R., Wang, X. and Woodroofe, M. (2006). Internal kinematics of the Fornax dwarf spheroidal galaxy. The Astronomical Journal 131 2114–2139.
  • Walker, M. G., Mateo, M., Olszewski, E. W., Sen, B. and Woodroofe, M. (2008). Clean kinematic samples in dwarf spheroidals: An algorithm for evaluating membership and estimating distribution parameters when contamination is present. The Astronomical Journal. To appear.
  • Wang, X., Woodroofe, M., Walker, M. G., Mateo, M. and Olszewski, E. W. (2005). Estimating dark matter distributions. The Astrophysical Journal 626 145–158.
  • Wang, X., Walker, M. G., Pal, J., Woodroofe, W. and Mateo, M. (2008a). Model independent estimates of dark matter distributions. J. Amer. Statist. Assoc. To appear.
  • Wang, X., Woodoofe, M., Pal, J., Walker, M. G. and Mateo, M. (2008b). Non-parametric estimation of dark matter distributions. In Statistical Challenges in Modern Astronomy, IV (J. Babu and E. Feigelson, eds).
  • Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimator of f(0+) when f in non-increasing. Statist. Sinica 3 505–515.