The Annals of Applied Statistics

A Bayesian framework for estimating vaccine efficacy per infectious contact

Yang Yang, Peter Gilbert, Ira M. Longini, Jr., and M. Elizabeth Halloran

Full-text: Open access

Abstract

In vaccine studies for infectious diseases such as human immunodeficiency virus (HIV), the frequency and type of contacts between study participants and infectious sources are among the most informative risk factors, but are often not adequately adjusted for in standard analyses. Such adjustment can improve the assessment of vaccine efficacy as well as the assessment of risk factors. It can be attained by modeling transmission per contact with infectious sources. However, information about contacts that rely on self-reporting by study participants are subject to nontrivial measurement error in many studies. We develop a Bayesian hierarchical model fitted using Markov chain Monte Carlo (MCMC) sampling to estimate the vaccine efficacy controlled for exposure to infection, while adjusting for measurement error in contact-related factors. Our method is used to re-analyze two recent HIV vaccine studies, and the results are compared with the published primary analyses that used standard methods. The proposed method could also be used for other vaccines where contact information is collected, such as human papilloma virus vaccines.

Article information

Source
Ann. Appl. Stat., Volume 2, Number 4 (2008), 1409-1431.

Dates
First available in Project Euclid: 8 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1231424216

Digital Object Identifier
doi:10.1214/08-AOAS193

Mathematical Reviews number (MathSciNet)
MR2655665

Zentralblatt MATH identifier
1154.62087

Keywords
Vaccine efficacy Bayesian MCMC measurement error copula

Citation

Yang, Yang; Gilbert, Peter; Longini, Jr., Ira M.; Halloran, M. Elizabeth. A Bayesian framework for estimating vaccine efficacy per infectious contact. Ann. Appl. Stat. 2 (2008), no. 4, 1409--1431. doi:10.1214/08-AOAS193. https://projecteuclid.org/euclid.aoas/1231424216


Export citation

References

  • Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models. Chapman and Hall, London.
  • Carroll, R. J., Kuchenhoff, H., Lombard, F. and Stefanski, L. A. (1995). Asymptotics for the SIMEX estimator in nonlinear measurement error models. J. Amer. Statist. Assoc. 91 242–250.
  • Chib, S. C. and Greenberg, E. (1994). Bayes inference in regression models with ARMA(p, q) errors. J. Economics 64 183–206.
  • Chib, S. C. and Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. The American Statistician 49 327–335.
  • Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models. J. Amer. Statist. Assoc. 89 1314–1328.
  • Fan, J. and Truong, Y. K. (1993). Nonparametric regression with errors in variables. Ann. Statist. 21 1900–1925.
  • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7 457–511.
  • Golm, G. T., Halloran, M. E. and Longini, M. L. (1999). Semiparametric methods for multiple exposure mismeasurement and a bivariate outcome in HIV vaccine trials. Biometrics 55 94–101.
  • Gurwith, M. and rgp120 HIV Vaccine Study Group (2005). Placebo-Controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infectious Diseases 191 654–665.
  • Halloran, M. E., Struchiner, C. J. and Longini, M. L. (1997). Study designs for evaluating different efficacy and effectiveness aspects of vaccines. American J. Epidemiology 146 789–803.
  • Hudgens, M. G., Longini, M. L., Vanichseni, S., Hu, D. J., Kitayaporn, D., Mock, P. A., Halloran, M. E., Satten, G., Choopanya, K. and Mastro, T. D. (2002). Subtype-specific transmission probabilities for human immunodeficiency virus type 1 among injecting drug users in Bangkok, Thailand. American J. Epidemiology 155 159–168.
  • Kitayaporn, D., Vanichseni, S., Mastro, T. D., Raktham, S., Vaniyapongs, T., Des Jarlais, D. C., Wasi, C., Young, N., Sujarita, S., Heyward, W. L. and Esparza, J. (1998). Infection with HIV-1 subtypes B and E in injecting drug users screened for enrollment into a prospective cohort in Bangkok, Thailand. J. Acquired Immune Deficiency Syndromes and Human Retrovirology 19 289–295.
  • Liu, J. S. (1996). Metropolized independence sampling with comparison to rejection sampling and importance sampling. Statistics and Computing 6 113–119.
  • Pitisuttithum, P., Gilbert, P., Gurwith, M., Heyward, W., Martin, M., van Griensven, F., Hu, D. J., Tappero, J. W. and Choopanya, K. (2006). Randomized, double-blinded, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infectious Diseases 194 1661–1671.
  • Richardson, S. and Gilks, W. R. (1993). A Bayesian approach to measurement error problems in epidemiology using conditional independence models. American J. Epidemiology 138 430–442.
  • Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components. J. Roy. Statist. Soc. Ser. B 59 731–792.
  • Richardson, S., Leblond, L., Jaussent, I. and Green, P. J. (2002). Mixture models in measurement error problems, with reference to epidemiological studies. J. Roy. Statist. Soc. Ser. A 165 549–566.