The Annals of Applied Probability

The nested Kingman coalescent: Speed of coming down from infinity

Airam Blancas, Tim Rogers, Jason Schweinsberg, and Arno Siri-Jégousse

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The nested Kingman coalescent describes the ancestral tree of a population undergoing neutral evolution at the level of individuals and at the level of species, simultaneously. We study the speed at which the number of lineages descends from infinity in this hierarchical coalescent process and prove the existence of an early-time phase during which the number of lineages at time $t$ decays as $2\gamma/ct^{2}$, where $c$ is the ratio of the coalescence rates at the individual and species levels, and the constant $\gamma\approx3.45$ is derived from a recursive distributional equation for the number of lineages contained within a species at a typical time.

Article information

Ann. Appl. Probab., Volume 29, Number 3 (2019), 1808-1836.

Received: March 2018
First available in Project Euclid: 19 February 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J25: Continuous-time Markov processes on general state spaces
Secondary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 92D15: Problems related to evolution 92D25: Population dynamics (general)

Kingman’s coalescent nested coalescent gene tree species tree coming down from infinity recursive distributional equation


Blancas, Airam; Rogers, Tim; Schweinsberg, Jason; Siri-Jégousse, Arno. The nested Kingman coalescent: Speed of coming down from infinity. Ann. Appl. Probab. 29 (2019), no. 3, 1808--1836. doi:10.1214/18-AAP1440.

Export citation


  • [1] Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3–48.
  • [2] Aldous, D. J. and Bandyopadhyay, A. (2005). A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 1047–1110.
  • [3] Bansaye, V., Méléard, S. and Richard, M. (2016). Speed of coming down from infinity for birth-and-death processes. Adv. in Appl. Probab. 48 1183–1210.
  • [4] Berestycki, J. and Berestycki, N. (2009). Kingman’s coalescent and Brownian motion. ALEA Lat. Am. J. Probab. Math. Stat. 6 239–259.
  • [5] Berestycki, J., Berestycki, N. and Limic, V. (2010). The $\Lambda$-coalescent speed of coming down from infinity. Ann. Probab. 38 207–233.
  • [6] Berestycki, N. (2009). Recent Progress in Coalescent Theory. Ensaios Matemáticos [Mathematical Surveys] 16. Sociedade Brasileira de Matemática, Rio de Janeiro.
  • [7] Blancas, A., Duchamps, J.-J., Lambert, A. and Siri-Jégousse, A. (2018). Trees within trees: Simple nested coalescents. Electron. J. Probab. 23 1–27.
  • [8] Creer, S. et al. (2010). Ultrasequencing of the meiofaunal biosphere: Practice, pitfalls and promises. Mol. Ecol. 19 4–20.
  • [9] Dawson, D. A. (2018). Multilevel mutation-selection systems and set-valued duals. J. Math. Biol. 76 295–378.
  • [10] Dhersin, J.-S., Freund, F., Siri-Jégousse, A. and Yuan, L. (2013). On the length of an external branch in the beta-coalescent. Stochastic Process. Appl. 123 1691–1715.
  • [11] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3 87–112; erratum, ibid. 3 (1972), 240; erratum, ibid. 3 (1972), 376.
  • [12] Givens, C. R. and Shortt, R. M. (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31 231–240.
  • [13] Harvey, P. H., May, R. M. and Nee, S. (1994). Phylogenies without fossils. Evolution 48 523–529.
  • [14] Kantorovič, L. V. and Rubinšteĭn, G. Š. (1958). On a space of completely additive functions. Vestnik Leningrad Univ. Math. 13 52–59.
  • [15] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235–248.
  • [16] Lambert, A. and Schertzer, E. (2018). Coagulation-transport equations and the nested coalescents. Available at arXiv:1807.09153.
  • [17] Maddison, W. P. (1997). Gene trees in species trees. Syst. Biol. 46 523–536.
  • [18] Möhle, M. (2000). Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models. Adv. in Appl. Probab. 32 983–993.
  • [19] Mooers, A. O. and Heard, S. B. (1997). Inferring evolutionary process from phylogenetic tree shape. Q. Rev. Biol. 72 31–54.
  • [20] Moran, P. A. P. (1958). Random processes in genetics. Proc. Camb. Philos. Soc. 54 60–71.
  • [21] Morgan, M. J., Bass, D., Bik, H., Birky, C. W., Blaxter, M., Crisp, M. D., Derycke, S., Fitch, D., Fontaneto, D. et al. (2014). A critique of Rossberg et al.: Noise obscures the genetic signal of meiobiotal ecospecies in ecogenomic datasets. Proc. Royal Soc., Biol. Sci. 281 20133076.
  • [22] Rossberg, A. G., Rogers, T. and McKane, A. J. (2013). Are there species smaller than 1 mm? Proc. Royal Soc. Biol. Sci. 280 20131248.
  • [23] Rossberg, A. G., Rogers, T. and McKane, A. J. (2014). Current noise-removal methods can create false signals in ecogenomic data. Proc. Royal Soc. Biol. Sci. 281 20140191.
  • [24] Szöllősi, G. J., Tannier, E., Daubin, V. and Boussau, B. (2014). The inference of gene trees with species trees. Syst. Biol. 64 e42–e62.