The Annals of Applied Probability

Freidlin–Wentzell LDP in path space for McKean–Vlasov equations and the functional iterated logarithm law

Gonçalo dos Reis, William Salkeld, and Julian Tugaut

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We show two Freidlin–Wentzell-type Large Deviations Principles (LDP) in path space topologies (uniform and Hölder) for the solution process of McKean–Vlasov Stochastic Differential Equations (MV-SDEs) using techniques which directly address the presence of the law in the coefficients and altogether avoiding decoupling arguments or limits of particle systems. We provide existence and uniqueness results along with several properties for a class of MV-SDEs having random coefficients and drifts of superlinear growth.

As an application of our results, we establish a functional Strassen-type result (law of iterated logarithm) for the solution process of a MV-SDE.

Article information

Ann. Appl. Probab., Volume 29, Number 3 (2019), 1487-1540.

Received: August 2017
Revised: February 2018
First available in Project Euclid: 19 February 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F10: Large deviations
Secondary: 60G07: General theory of processes

McKean–Vlasov equations large deviations principle path-space Hölder topologies superlinear growth functional Strassen law


dos Reis, Gonçalo; Salkeld, William; Tugaut, Julian. Freidlin–Wentzell LDP in path space for McKean–Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29 (2019), no. 3, 1487--1540. doi:10.1214/18-AAP1416.

Export citation


  • [1] Baldi, P. (1986). Large deviations and functional iterated logarithm law for diffusion processes. Probab. Theory Related Fields 71 435–453.
  • [2] Baldi, P., Ben Arous, G. and Kerkyacharian, G. (1992). Large deviations and the Strassen theorem in Hölder norm. Stochastic Process. Appl. 42 171–180.
  • [3] Ben Arous, G. and Ledoux, M. (1994). Grandes déviations de Freidlin–Wentzell en norme hölderienne. In Séminaire de Probabilités, XXVIII. Lecture Notes in Math. 1583 293–299. Springer, Berlin.
  • [4] Benachour, S., Roynette, B., Talay, D. and Vallois, P. (1998). Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stochastic Process. Appl. 75 173–201.
  • [5] Buckdahn, R., Li, J., Peng, S., Rainer, C. et al. (2017). Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45 824–878.
  • [6] Budhiraja, A., Dupuis, P. and Fischer, M. (2012). Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40 74–102.
  • [7] Carmona, R. (2016). Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications. Financial Mathematics 1. SIAM, Philadelphia, PA.
  • [8] Carmona, R. and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. I. Probability Theory and Stochastic Modelling 83. Springer, Cham.
  • [9] Carmona, R. and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II. Probability Theory and Stochastic Modelling 84. Springer, Cham.
  • [10] Cattiaux, P., Guillin, A. and Malrieu, F. (2008). Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Related Fields 140 19–40.
  • [11] Collet, F., Dai Pra, P. and Sartori, E. (2010). A simple mean field model for social interactions: Dynamics, fluctuations, criticality. J. Stat. Phys. 139 820–858.
  • [12] Crisan, D. and McMurray, E. (2018). Smoothing properties of McKean–Vlasov SDEs. Probab. Theory Related Fields 171 97–148.
  • [13] Crisan, D. and Xiong, J. (2010). Approximate McKean–Vlasov representations for a class of SPDEs. Stochastics 82 53–68.
  • [14] Dai Pra, P. and den Hollander, F. (1996). McKean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84 735–772.
  • [15] Dawson, D. A. and Gärtner, J. (1987). Large deviations from the McKean–Vlasov limit for weakly interacting diffusions. Stochastics 20 247–308.
  • [16] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin.
  • [17] Deuschel, J.-D., Friz, P. K., Maurelli, M. and Slowik, M. (2018). The enhanced Sanov theorem and propagation of chaos. Stochastic Process. Appl. 128 2228–2269.
  • [18] dos Reis, G., Smith, G. and Tankov, P. (2018). Importance sampling for McKean–Vlasov SDEs. ArXiv preprint. Available at ArXiv:1803.09320.
  • [19] Dunford, N. and Schwartz, J. T. (1988). Linear Operators. Part I. Wiley, New York.
  • [20] Eddahbi, M. (2000). Large deviation estimates and functional law for diffusions in modulus spaces. Random Oper. Stoch. Equ. 8 373–396.
  • [21] Eddahbi, M. and N’zi, M. (2002). Strassen’s local law for diffusion processes under strong topologies. Acta Math. Vietnam. 27 151–163.
  • [22] Freidlin, M. I. and Wentzell, A. D. (2012). Random Perturbations of Dynamical Systems, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, Heidelberg. Translated from the 1979 Russian original by Joseph Szücs.
  • [23] Gantert, N. (1993). An inversion of Strassen’s law of the iterated logarithm for small time. Ann. Probab. 21 1045–1049.
  • [24] Gärtner, J. (1988). On the McKean–Vlasov limit for interacting diffusions. Math. Nachr. 137 197–248.
  • [25] Guasoni, P. and Robertson, S. (2008). Optimal importance sampling with explicit formulas in continuous time. Finance Stoch. 12 1–19.
  • [26] Herrmann, S., Imkeller, P., Pavlyukevich, I. and Peithmann, D. (2014). Stochastic Resonance: A Mathematical Approach in the Small Noise Limit. Mathematical Surveys and Monographs 194. Amer. Math. Soc., Providence, RI.
  • [27] Herrmann, S., Imkeller, P. and Peithmann, D. (2008). Large deviations and a Kramers’ type law for self-stabilizing diffusions. Ann. Appl. Probab. 18 1379–1423.
  • [28] Mao, X. (2008). Stochastic Differential Equations and Applications, 2nd ed. Horwood Publishing Limited, Chichester.
  • [29] McKean, H. P. Jr. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 1907–1911.
  • [30] McKean, H. P. Jr. (1967). Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) 41–57. Air Force Office Sci. Res., Arlington, VA.
  • [31] Méléard, S. (1996). Asymptotic behaviour of some interacting particle systems; McKean–Vlasov and Boltzmann models. In Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995). Lecture Notes in Math. 1627 42–95. Springer, Berlin.
  • [32] Mishura, Y. S. and Veretennikov, A. Y. (2016). Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations. ArXiv preprint. Available at ArXiv:1603.02212.
  • [33] Øksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin.
  • [34] Pope, S. B. (2000). Turbulent Flows. Cambridge Univ. Press, Cambridge.
  • [35] Scheutzow, M. (1987). Uniqueness and nonuniqueness of solutions of Vlasov–McKean equations. J. Aust. Math. Soc. A 43 246–256.
  • [36] Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 211–226.
  • [37] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin.
  • [38] Villani, C. (2009). Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin.