The Annals of Applied Probability

Normal approximation for stabilizing functionals

Raphaël Lachièze-Rey, Matthias Schulte, and J. E. Yukich

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We establish presumably optimal rates of normal convergence with respect to the Kolmogorov distance for a large class of geometric functionals of marked Poisson and binomial point processes on general metric spaces. The rates are valid whenever the geometric functional is expressible as a sum of exponentially stabilizing score functions satisfying a moment condition. By incorporating stabilization methods into the Malliavin–Stein theory, we obtain rates of normal approximation for sums of stabilizing score functions which either improve upon existing rates or are the first of their kind.

Our general rates hold for functionals of marked input on spaces more general than full-dimensional subsets of $\mathbb{R}^{d}$, including $m$-dimensional Riemannian manifolds, $m\leq d$. We use the general results to deduce improved and new rates of normal convergence for several functionals in stochastic geometry, including those whose variances re-scale as the volume or the surface area of an underlying set. In particular, we improve upon rates of normal convergence for the $k$-face and $i$th intrinsic volume functionals of the convex hull of Poisson and binomial random samples in a smooth convex body in dimension $d\geq 2$. We also provide improved rates of normal convergence for statistics of nearest neighbors graphs and high-dimensional data sets, the number of maximal points in a random sample, estimators of surface area and volume arising in set approximation via Voronoi tessellations, and clique counts in generalized random geometric graphs.

Article information

Ann. Appl. Probab., Volume 29, Number 2 (2019), 931-993.

Received: December 2017
Revised: May 2018
First available in Project Euclid: 24 January 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems
Secondary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Stein’s method Malliavin calculus stabilization random Euclidean graphs statistics of data sets statistics of convex hulls Voronoi set approximation maximal points


Lachièze-Rey, Raphaël; Schulte, Matthias; Yukich, J. E. Normal approximation for stabilizing functionals. Ann. Appl. Probab. 29 (2019), no. 2, 931--993. doi:10.1214/18-AAP1405.

Export citation


  • [1] Avram, F. and Bertsimas, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Probab. 3 1033–1046.
  • [2] Bai, Z.-D., Hwang, H.-K. and Tsai, T.-H. (2003). Berry–Esseen bounds for the number of maxima in planar regions. Electron. J. Probab. 8 Article ID 9.
  • [3] Bárány, I., Fodor, F. and Vígh, V. (2010). Intrinsic volumes of inscribed random polytopes in smooth convex bodies. Adv. in Appl. Probab. 42 605–619.
  • [4] Barbour, A. D. and Xia, A. (2001). The number of two-dimensional maxima. Adv. in Appl. Probab. 33 727–750.
  • [5] Barbour, A. D. and Xia, A. (2006). Normal approximation for random sums. Adv. in Appl. Probab. 38 693–728.
  • [6] Baryshnikov, Y., Penrose, M. D. and Yukich, J. E. (2009). Gaussian limits for generalized spacings. Ann. Appl. Probab. 19 158–185.
  • [7] Baryshnikov, Y. and Yukich, J. E. (2005). Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 213–253.
  • [8] Bickel, P. J. and Breiman, L. (1983). Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab. 11 185–214.
  • [9] Calka, P., Schreiber, T. and Yukich, J. E. (2013). Brownian limits, local limits and variance asymptotics for convex hulls in the ball. Ann. Probab. 41 50–108.
  • [10] Chatterjee, S. (2008). A new method of normal approximation. Ann. Probab. 36 1584–1610.
  • [11] Chen, W.-M., Hwang, H.-K. and Tsai, T.-H. (2003). Efficient maxima-finding algorithms for random planar samples. Discrete Math. Theor. Comput. Sci. 6 107–122.
  • [12] Decreusefond, L., Ferraz, E., Randriambololona, H. and Vergne, A. (2014). Simplicial homology of random configurations. Adv. in Appl. Probab. 46 325–347.
  • [13] Eichelsbacher, P., Raič, M. and Schreiber, T. (2015). Moderate deviations for stabilizing functionals in geometric probability. Ann. Inst. Henri Poincaré B Probab. Stat. 51 89–128.
  • [14] Eichelsbacher, P. and Thäle, C. (2014). New Berry–Esseen bounds for non-linear functionals of Poisson random measures. Electron. J. Probab. 19 Article ID 102.
  • [15] Goldstein, L., Johnson, T. and Lachièze-Rey, R. (2018). Bounds to the normal for proximity region graphs. Stochastic Process. Appl. 128 1208–1237.
  • [16] Grote, J. and Thäle, C. (2018). Concentration and moderate deviations for Poisson polytopes and polyhedra. Bernoulli 24 2811–2841.
  • [17] Hirsch, C. (2017). From heavy-tailed Boolean models to scale-free Gilbert graphs. Braz. J. Probab. Stat. 31 111–143.
  • [18] Jiménez, R. and Yukich, J. E. (2011). Nonparametric estimation of surface integrals. Ann. Statist. 39 232–260.
  • [19] Kesten, H. and Lee, S. (1996). The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab. 6 495–527.
  • [20] Lachièze-Rey, R. and Peccati, G. (2017). New Berry–Esseen bounds for functionals of binomial point processes. Ann. Appl. Probab. 27 1992–2031.
  • [21] Lachièze-Rey, R. and Vega, S. (2017). Boundary density and Voronoi set estimation for irregular sets. Trans. Amer. Math. Soc. 369 4953–4976.
  • [22] Last, G., Peccati, G. and Schulte, M. (2016). Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Probab. Theory Related Fields 165 667–723.
  • [23] Last, G. and Penrose, M. D. (2017). Lectures on the Poisson Process. Cambridge Univ. Press, Cambridge.
  • [24] Penrose, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford.
  • [25] Penrose, M. D. (2007). Gaussian limits for random geometric measures. Electron. J. Probab. 12 989–1035.
  • [26] Penrose, M. D. (2007). Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13 1124–1150.
  • [27] Penrose, M. D. and Rosoman, T. (2008). Error bounds in stochastic-geometrical normal approximation. In Fifth Colloquium on Mathematics and Computer Science. Discrete Math. Theor. Comput. Sci. Proc., AI 71–94. Assoc. Discrete Math. Theor. Comput. Sci., Nancy.
  • [28] Penrose, M. D. and Yukich, J. E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11 1005–1041.
  • [29] Penrose, M. D. and Yukich, J. E. (2003). Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13 277–303.
  • [30] Penrose, M. D. and Yukich, J. E. (2005). Normal approximation in geometric probability. In Stein’s Method and Applications. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5 37–58. Singapore Univ. Press, Singapore.
  • [31] Penrose, M. D. and Yukich, J. E. (2013). Limit theory for point processes in manifolds. Ann. Appl. Probab. 23 2161–2211.
  • [32] Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, New York.
  • [33] Rataj, J. and Winter, S. (2010). On volume and surface area of parallel sets. Indiana Univ. Math. J. 59 1661–1685.
  • [34] Reitzner, M. (2005). Central limit theorems for random polytopes. Probab. Theory Related Fields 133 483–507.
  • [35] Reitzner, M. and Schulte, M. (2013). Central limit theorems for $U$-statistics of Poisson point processes. Ann. Probab. 41 3879–3909.
  • [36] Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von $n$ zufällig gewählten Punkten. Z. Wahrsch. Verw. Gebiete 2 75–84.
  • [37] Rényi, A. and Sulanke, R. (1964). Über die konvexe Hülle von $n$ zufällig gewählten Punkten. II. Z. Wahrsch. Verw. Gebiete 3 138–147.
  • [38] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Probability and Its Applications (New York). Springer, Berlin.
  • [39] Schoen, R. and Yau, S.-T. (1994). Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology. International Press, Cambridge, MA.
  • [40] Schreiber, T. (2010). Limit theorems in stochastic geometry. In New Perspectives in Stochastic Geometry 111–144. Oxford Univ. Press, Oxford.
  • [41] Schreiber, T., Penrose, M. D. and Yukich, J. E. (2007). Gaussian limits for multidimensional random sequential packing at saturation. Comm. Math. Phys. 272 167–183.
  • [42] Schulte, M. (2012). A central limit theorem for the Poisson–Voronoi approximation. Adv. in Appl. Math. 49 285–306.
  • [43] Schulte, M. (2016). Normal approximation of Poisson functionals in Kolmogorov distance. J. Theoret. Probab. 29 96–117.
  • [44] Sholomov, L. A. (1983). Survey of estimational results in choice problems. Izv. Akad. Nauk SSSR Tekhn. Kibernet. 1 60–87.
  • [45] Thäle, C., Turchi, N. and Wespi, F. (2018). Random polytopes: Central limit theorems for intrinsic volumes. Proc. Amer. Math. Soc. 146 3063–3071.
  • [46] Thäle, C. and Yukich, J. E. (2016). Asymptotic theory for statistics of the Poisson–Voronoi approximation. Bernoulli 22 2372–2400.
  • [47] Vu, V. (2006). Central limit theorems for random polytopes in a smooth convex set. Adv. Math. 207 221–243.
  • [48] Yukich, J. E. (2015). Surface order scaling in stochastic geometry. Ann. Appl. Probab. 25 177–210.