The Annals of Applied Probability

A simple evolutionary game arising from the study of the role of IGF-II in pancreatic cancer

Ruibo Ma and Rick Durrett

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study an evolutionary game in which a producer at $x$ gives birth at rate 1 to an offspring sent to a randomly chosen point in $x+\mathcal{N}_{c}$, while a cheater at $x$ gives birth at rate $\lambda>1$ times the fraction of producers in $x+\mathcal{N}_{d}$ and sends its offspring to a randomly chosen point in $x+\mathcal{N}_{c}$. We first study this game on the $d$-dimensional torus $(\mathbb{Z}\bmod L)^{d}$ with $\mathcal{N}_{d}=(\mathbb{Z}\bmod L)^{d}$ and $\mathcal{N}_{c}$ = the $2d$ nearest neighbors. If we let $L\to\infty$ then $t\to\infty$ the fraction of producers converges to $1/\lambda$. In $d\ge3$ the limiting finite dimensional distributions converge as $t\to\infty$ to the voter model equilibrium with density $1/\lambda$. We next reformulate the system as an evolutionary game with “birth-death” updating and take $\mathcal{N}_{c}=\mathcal{N}_{d}=\mathcal{N}$. Using results for voter model perturbations we show that in $d=3$ with $\mathcal{N}=$ the six nearest neighbors, the density of producers converges to $(2/\lambda)-0.5$ for $4/3<\lambda<4$. Producers take over the system when $\lambda<4/3$ and die out when $\lambda>4$. In $d=2$ with $\mathcal{N}=[-c\sqrt{\log N},c\sqrt{\log N}]^{2}$ there are similar phase transitions, with coexistence occurring when $(1+2\theta)/(1+\theta)<\lambda<(1+2\theta)/\theta$ where $\theta=(e^{3/(\pi c^{2})}-1)/2$.

Article information

Ann. Appl. Probab., Volume 28, Number 5 (2018), 2896-2921.

Received: March 2017
Revised: December 2017
First available in Project Euclid: 28 August 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 92D15: Problems related to evolution

Replicator equation voter model perturbation weak selection reaction-diffusion equation


Ma, Ruibo; Durrett, Rick. A simple evolutionary game arising from the study of the role of IGF-II in pancreatic cancer. Ann. Appl. Probab. 28 (2018), no. 5, 2896--2921. doi:10.1214/17-AAP1378.

Export citation


  • [1] Archetti, M., Ferraro, D. A. and Christofori, G. (2015). Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer. Proc. Natl. Acad. Sci. USA 112 1833–1838.
  • [2] Cox, J. T. (2010). Intermediate range migration in the two-dimensional stepping stone model. Ann. Appl. Probab. 20 785–805.
  • [3] Cox, J. T. and Durrett, R. (2016). Evolutionary games on the torus with weak selection. Stochastic Process. Appl. 126 2388–2409.
  • [4] Cox, J. T., Durrett, R. and Perkins, E. A. (2013). Voter model perturbations and reaction diffusion equations. Astérisque 349 vi+113.
  • [5] Cox, J. T., Merle, M. and Perkins, E. (2010). Coexistence in a two-dimensional Lotka–Volterra model. Electron. J. Probab. 15 1190–1266.
  • [6] Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical and Probabilistic Mathematics 31. Cambridge Univ. Press, Cambridge.
  • [7] Durrett, R. (2014). Spatial evolutionary games with small selection coefficients. Electron. J. Probab. 19 no. 121, 64.
  • [8] Durrett, R., Liggett, T. and Zhang, Y. (2014). The contact process with fast voting. Electron. J. Probab. 19 no. 28, 19.
  • [9] Durrett, R. and Neuhauser, C. (1994). Particle systems and reaction-diffusion equations. Ann. Probab. 22 289–333.
  • [10] Durrett, R. and Zähle, I. (2007). On the width of hybrid zones. Stochastic Process. Appl. 117 1751–1763.
  • [11] Dvoretzky, A. and Erdös, P. (1951). Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 353–367. Univ. California Press, Berkeley and Los Angeles.
  • [12] Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin.
  • [13] Harris, T. E. (1976). On a class of set-valued Markov processes. Ann. Probab. 4 175–194.
  • [14] Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge.
  • [15] Kesten, H. (1978). Erickson’s conjecture on the rate of escape of $d$-dimensional random walk. Trans. Amer. Math. Soc. 240 65–113.
  • [16] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York.
  • [17] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 324. Springer, Berlin.
  • [18] Molofsky, J., Durrett, R., Dushoff, J., Griffeath, D. and Levin, S. A. (1999). Local frequency dependence and global coexistence. Theor. Popul. Biol. 55 270–282.
  • [19] Ohtsuki, H., Hauert, C., Lieberman, E. and Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature 441 502–505.