The Annals of Applied Probability

A functional central limit theorem for branching random walks, almost sure weak convergence and applications to random trees

Rudolf Grübel and Zakhar Kabluchko

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $W_{\infty}(\beta)$ be the limit of the Biggins martingale $W_{n}(\beta)$ associated to a supercritical branching random walk with mean number of offspring $m$. We prove a functional central limit theorem stating that as $n\to\infty$ the process

\[D_{n}(u):=m^{\frac{1}{2}n}(W_{\infty}(\frac{u}{\sqrt{n}})-W_{n}(\frac{u}{\sqrt{n}}))\] converges weakly, on a suitable space of analytic functions, to a Gaussian random analytic function with random variance. Using this result, we prove central limit theorems for the total path length of random trees. In the setting of binary search trees, we recover a recent result of R. Neininger [Random Structures Algorithms 46 (2015) 346–361], but we also prove a similar theorem for uniform random recursive trees. Moreover, we replace weak convergence in Neininger’s theorem by the almost sure weak (a.s.w.) convergence of probability transition kernels. In the case of binary search trees, our result states that

\[\mathcal{L}\{\sqrt{\frac{n}{2\log n}}(\operatorname{EPL}_{\infty}-\frac{\operatorname{EPL}_{n}-2n\log n}{n})\Big |\mathcal{G}_{n}\}\overset{\mathrm{a.s.w.}}{\underset{n\to\infty}\longrightarrow}\{\omega \mapsto\mathcal{N}_{0,1}\},\] where $\operatorname{EPL}_{n}$ is the external path length of a binary search tree $X_{n}$ with $n$ vertices, $\operatorname{EPL}_{\infty}$ is the limit of the Régnier martingale and $\mathcal{L}\{\cdot |\mathcal{G}_{n}\}$ denotes the conditional distribution w.r.t. the $\sigma$-algebra $\mathcal{G}_{n}$ generated by $X_{1},\ldots,X_{n}$. Almost sure weak convergence is stronger than weak and even stable convergence. We prove several basic properties of the a.s.w. convergence and study a number of further examples in which the a.s.w. convergence appears naturally. These include the classical central limit theorem for Galton–Watson processes and the Pólya urn.

Article information

Source
Ann. Appl. Probab., Volume 26, Number 6 (2016), 3659-3698.

Dates
Received: May 2015
Revised: September 2015
First available in Project Euclid: 15 December 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1481792596

Digital Object Identifier
doi:10.1214/16-AAP1188

Mathematical Reviews number (MathSciNet)
MR3582814

Zentralblatt MATH identifier
1367.60028

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60F05: Central limit and other weak theorems 60F17: Functional limit theorems; invariance principles 60B10: Convergence of probability measures 68P10: Searching and sorting 60G42: Martingales with discrete parameter

Keywords
Branching random walk functional central limit theorem Gaussian analytic function binary search trees random recursive trees Quicksort distribution stable convergence mixing convergence almost sure weak convergence Pólya urns Galton–Watson processes

Citation

Grübel, Rudolf; Kabluchko, Zakhar. A functional central limit theorem for branching random walks, almost sure weak convergence and applications to random trees. Ann. Appl. Probab. 26 (2016), no. 6, 3659--3698. doi:10.1214/16-AAP1188. https://projecteuclid.org/euclid.aoap/1481792596


Export citation

References

  • [1] Aldous, D. J. and Eagleson, G. K. (1978). On mixing and stability of limit theorems. Ann. Probab. 6 325–331.
  • [2] Asmussen, S. and Hering, H. (1983). Branching Processes. Progress in Probability and Statistics 3. Birkhäuser, Boston, MA.
  • [3] Athreya, K. B. (1968). Some results on multitype continuous time Markov branching processes. Ann. Math. Stat. 39 347–357.
  • [4] Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover, Mineola, NY.
  • [5] Berti, P., Pratelli, L. and Rigo, P. (2006). Almost sure weak convergence of random probability measures. Stochastics 78 91–97.
  • [6] Biggins, J. D. (1992). Uniform convergence of martingales in the branching random walk. Ann. Probab. 20 137–151.
  • [7] Billingsley, P. (1986). Probability and Measure, 2nd ed. Wiley, New York.
  • [8] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
  • [9] Chauvin, B., Klein, T., Marckert, J.-F. and Rouault, A. (2005). Martingales and profile of binary search trees. Electron. J. Probab. 10 420–435 (electronic).
  • [10] Chauvin, B. and Rouault, A. (2004). Connecting Yule process, Bisection and Binary Search Tree via martingales. J. Iran. Stat. Soc. (JIRSS) 3 89–116.
  • [11] Devroye, L. (1998). Branching processes and their applications in the analysis of tree structures and tree algorithms. In Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms Combin. 16 249–314. Springer, Berlin.
  • [12] Dobrow, R. P. and Fill, J. A. (1999). Total path length for random recursive trees. Combin. Probab. Comput. 8 317–333.
  • [13] Drmota, M. (2009). Random Trees: An Interplay Between Combinatorics and Probability. Springer, Wien.
  • [14] Evans, S. N., Grübel, R. and Wakolbinger, A. (2012). Trickle-down processes and their boundaries. Electron. J. Probab. 17 1–58.
  • [15] Fuchs, M. (2015). A note on the Quicksort asymptotics. Random Structures Algorithms 46 677–687.
  • [16] Grübel, R. and Michailow, I. (2015). Random recursive trees: A boundary theory approach. Electron. J. Probab. 20 1–22.
  • [17] Grzenda, W. and Ziȩba, W. (2008). Conditional central limit theorem. Int. Math. Forum 3 1521–1528.
  • [18] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.
  • [19] Häusler, E. and Luschgy, H. (2015). Stable Convergence and Stable Limit Theorems. Probability Theory and Stochastic Modelling 74. Springer, Cham.
  • [20] Heyde, C. C. (1970). A rate of convergence result for the super-critical Galton–Watson process. J. Appl. Probab. 7 451–454.
  • [21] Heyde, C. C. (1971). Some almost sure convergence theorems for branching processes. Z. Wahrsch. Verw. Gebiete 20 189–192.
  • [22] Heyde, C. C. (1977). On central limit and iterated logarithm supplements to the martingale convergence theorem. J. Appl. Probab. 14 758–775.
  • [23] Kabluchko, Z. and Klimovsky, A. (2014). Complex random energy model: Zeros and fluctuations. Probab. Theory Related Fields 158 159–196.
  • [24] Kabluchko, Z. and Klimovsky, A. (2014). Generalized Random Energy Model at complex temperatures. Preprint. Available at http://arxiv.org/abs/1402.2142.
  • [25] Landers, D. and Rogge, L. (1972). A generalized martingale theorem. Z. Wahrsch. Verw. Gebiete 23 289–292.
  • [26] Loève, M. (1963). Probability Theory, 3rd ed. D. Van Nostrand, Princeton.
  • [27] Loynes, R. M. (1969). The central limit theorem for backwards martingales. Z. Wahrsch. Verw. Gebiete 13 1–8.
  • [28] Luschgy, H. (2013). Martingale in Diskreter Zeit. Theorie und Anwendungen. Springer Spektrum, Berlin.
  • [29] Mahmoud, H. M. (1991). Limiting distributions for path lengths in recursive trees. Probab. Engrg. Inform. Sci. 5 53–59.
  • [30] Neininger, R. (2015). Refined Quicksort asymptotics. Random Structures Algorithms 46 346–361.
  • [31] Nowak, W. and Ziȩba, W. (2005). Types of conditional convergence. Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 97–105.
  • [32] Rassoul-Agha, F. and Seppäläinen, T. (2015). A Course on Large Deviations with an Introduction to Gibbs Measures. Graduate Studies in Mathematics 162. Amer. Math. Soc., Providence, RI.
  • [33] Régnier, M. (1989). A limiting distribution for quicksort. RAIRO Inform. Théor. Appl. 23 335–343.
  • [34] Rényi, A. (1958). On mixing sequences of sets. Acta Math. Acad. Sci. Hungar. 9 215–228.
  • [35] Rényi, A. (1963). On stable sequences of events. Sankhyā Ser. A 25 293–302.
  • [36] Rényi, A. and Révész, P. (1958). On mixing sequences of random variables. Acta Math. Acad. Sci. Hungar. 9 389–393.
  • [37] Rosenthal, H. P. (1970). On the subspaces of $L^{p}$ $(p>2)$ spanned by sequences of independent random variables. Israel J. Math. 8 273–303.
  • [38] Rösler, U. (1991). A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl. 25 85–100.
  • [39] Rösler, U., Topchii, V. and Vatutin, V. (2002). Convergence rate for stable weighted branching processes. In Mathematics and Computer Science, II (Versailles, 2002). 441–453. Birkhäuser, Basel.
  • [40] Shirai, T. (2012). Limit theorems for random analytic functions and their zeros. In Functions in Number Theory and Their Probabilistic Aspects. RIMS Kôkyûroku Bessatsu B34 335–359. Res. Inst. Math. Sci. (RIMS), Kyoto.
  • [41] Sodin, M. and Tsirelson, B. (2004). Random complex zeroes. I. Asymptotic normality. Israel J. Math. 144 125–149.
  • [42] Uchiyama, K. (1982). Spatial growth of a branching process of particles living in $\mathbf{R}^{d}$. Ann. Probab. 10 896–918.
  • [43] von Bahr, B. and Esseen, C.-G. (1965). Inequalities for the $r$th absolute moment of a sum of random variables, $1\leq r\leq2$. Ann. Math. Stat. 36 299–303.