The Annals of Applied Probability

Stein estimation of the intensity of a spatial homogeneous Poisson point process

Marianne Clausel, Jean-François Coeurjolly, and Jérôme Lelong

Full-text: Open access

Abstract

In this paper, we revisit the original ideas of Stein and propose an estimator of the intensity parameter of a homogeneous Poisson point process defined on $\mathbb{R}^{d}$ and observed on a bounded window. The procedure is based on a new integration by parts formula for Poisson point processes. We show that our Stein estimator outperforms the maximum likelihood estimator in terms of mean squared error. In many practical situations, we obtain a gain larger than 30%.

Article information

Source
Ann. Appl. Probab., Volume 26, Number 3 (2016), 1495-1534.

Dates
Received: July 2014
Revised: March 2015
First available in Project Euclid: 14 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1465905010

Digital Object Identifier
doi:10.1214/15-AAP1124

Mathematical Reviews number (MathSciNet)
MR3513597

Zentralblatt MATH identifier
1345.60045

Subjects
Primary: 60G55: Point processes
Secondary: 60H07: Stochastic calculus of variations and the Malliavin calculus

Keywords
Stein formula Malliavin calculus superefficient estimator intensity estimation spatial point process

Citation

Clausel, Marianne; Coeurjolly, Jean-François; Lelong, Jérôme. Stein estimation of the intensity of a spatial homogeneous Poisson point process. Ann. Appl. Probab. 26 (2016), no. 3, 1495--1534. doi:10.1214/15-AAP1124. https://projecteuclid.org/euclid.aoap/1465905010


Export citation

References

  • Adams, R. A. (1975). Sobolev Spaces. Academic Press, New York.
  • Albeverio, S., Kondratiev, Y. G. and Röckner, M. (1996). Differential geometry of Poisson spaces. C. R. Acad. Sci. Paris Sér. I Math. 323 1129–1134.
  • Albeverio, S., Kondratiev, Yu. G. and Röckner, M. (1998). Analysis and geometry on configuration spaces. J. Funct. Anal. 154 444–500.
  • Birman, M. Sh. and Solomjak, M. Z. (1987). Spectral Theory of Selfadjoint Operators in Hilbert Space. Reidel, Dordrecht.
  • Carlen, E. A. and Pardoux, É. (1990). Differential calculus and integration by parts on Poisson space. In Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988). Math. Appl. 59 63–73. Kluwer Academic, Dordrecht.
  • Chen, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3 534–545.
  • Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, 2nd ed. Springer, New York.
  • Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd ed. Springer, New York.
  • Decreusefond, L., Joulin, A. and Savy, N. (2010). Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stoch. Anal. 4 377–399.
  • Elliott, R. J. and Tsoi, A. H. (1993). Integration by parts for Poisson processes. J. Multivariate Anal. 44 179–190.
  • Evans, L. C. and Gariepy, R. F. (1992). Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL.
  • Fang, S. and Malliavin, P. (1993). Stochastic analysis on the path space of a Riemannian manifold. I. Markovian stochastic calculus. J. Funct. Anal. 118 249–274.
  • Hörmander, L. (2003). The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, 2nd ed. Springer, Berlin.
  • James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I 361–379. Univ. California Press, Berkeley, CA.
  • Møller, J. and Waagepetersen, R. P. (2004). Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100. Chapman & Hall/CRC, Boca Raton, FL.
  • Murr, R. (2012). Reciprocal classes of Markov processes. An approach with duality formulae. Ph.D. thesis.
  • Prat, J.-J. and Privault, N. (1999). Explicit stochastic analysis of Brownian motion and point measures on Riemannian manifolds. J. Funct. Anal. 167 201–242.
  • Privault, N. (1994). Chaotic and variational calculus in discrete and continuous time for the Poisson process. Stoch. Stoch. Rep. 51 83–109.
  • Privault, N. (2009). Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales. Lecture Notes in Math. 1982. Springer, Berlin.
  • Privault, N. and Réveillac, A. (2006). Superefficient drift estimation on the Wiener space. C. R. Math. Acad. Sci. Paris 343 607–612.
  • Privault, N. and Réveillac, A. (2008). Stein estimation for the drift of Gaussian processes using the Malliavin calculus. Ann. Statist. 36 2531–2550.
  • Privault, N. and Réveillac, A. (2009). Stein estimation of Poisson process intensities. Stat. Inference Stoch. Process. 12 37–53.
  • Privault, N. and Torrisi, G. L. (2011). Density estimation of functionals of spatial point processes with application to wireless networks. SIAM J. Math. Anal. 43 1311–1344.
  • Röckner, M. and Schied, A. (1999). Rademacher’s theorem on configuration spaces and applications. J. Funct. Anal. 169 325–356.
  • Rubinstein, R. Y. and Shapiro, A. (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. Wiley, Chichester.
  • Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 19541955, Vol. I 197–206. Univ. California Press, Berkeley and Los Angeles.
  • Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135–1151.
  • Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications. Wiley, Chichester.
  • Triebel, H. (1983). Theory of Functions Spaces. Birkhauser, Basel.
  • Zuily, C. (2002). Eléments de distributions et d’équations aux dérivées partielles. Dunod, Paris.