The Annals of Applied Probability

Glassy phase and freezing of log-correlated Gaussian potentials

Thomas Madaule, Rémi Rhodes, and Vincent Vargas

Full-text: Open access

Abstract

In this paper, we consider the Gibbs measure associated to a logarithmically correlated random potential (including two-dimensional free fields) at low temperature. We prove that the energy landscape freezes and enters in the so-called glassy phase. The limiting Gibbs weights are integrated atomic random measures with random intensity expressed in terms of the critical Gaussian multiplicative chaos constructed in [Ann. Probab. 42 (2014) 1769–1808 and Comm. Math. Phys. (2013) To appear]. This could be seen as a first rigorous step in the renormalization theory of super-critical Gaussian multiplicative chaos.

Article information

Source
Ann. Appl. Probab., Volume 26, Number 2 (2016), 643-690.

Dates
Received: May 2014
Revised: September 2014
First available in Project Euclid: 22 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1458651816

Digital Object Identifier
doi:10.1214/14-AAP1071

Mathematical Reviews number (MathSciNet)
MR3476621

Zentralblatt MATH identifier
1341.60094

Subjects
Primary: 60G57: Random measures 60G15: Gaussian processes

Keywords
Gaussian multiplicative chaos supercritical renormalization freezing glassy phase

Citation

Madaule, Thomas; Rhodes, Rémi; Vargas, Vincent. Glassy phase and freezing of log-correlated Gaussian potentials. Ann. Appl. Probab. 26 (2016), no. 2, 643--690. doi:10.1214/14-AAP1071. https://projecteuclid.org/euclid.aoap/1458651816


Export citation

References

  • [1] Allez, R., Rhodes, R. and Vargas, V. (2013). Lognormal $\star$-scale invariant random measures. Probab. Theory Related Fields 155 751–788.
  • [2] Arguin, L.-P. and Zindy, O. (2014). Poisson–Dirichlet statistics for the extremes of a log-correlated Gaussian field. Ann. Appl. Probab. 24 1446–1481.
  • [3] Arguin, L.-P. and Zindy, O. (2015). Poisson–Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian free field. Electron. J. Probab. 20 no. 59, 19.
  • [4] Barral, J., Jin, X., Rhodes, R. and Vargas, V. (2013). Gaussian multiplicative chaos and KPZ duality. Comm. Math. Phys. 323 451–485.
  • [5] Barral, J., Rhodes, R. and Vargas, V. (2012). Limiting laws of supercritical branching random walks. C. R. Math. Acad. Sci. Paris 350 535–538.
  • [6] Biskup, M. and Louidor, O. (2013). Extreme local extrema of the two-dimensional discrete Gaussian free field. Preprint. Available at arXiv:1306.2602.
  • [7] Bramson, M., Ding, J. and Zeitouni, O. (2015). Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Preprint. Available at arXiv:1301.6669.
  • [8] Carpentier, D. and Le Doussal, P. (2001). Glass transition of a particle in a random potential, front selection in nonlinear RG and entropic phenomena in Liouville and sinh-Gordon models. Phys. Rev. E 63 026110.
  • [9] Derrida, B. and Spohn, H. (1988). Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51 817–840.
  • [10] Duplantier, B., Rhodes, R., Sheffield, S. and Vargas, V. (2014). Renormalization of critical Gaussian multiplicative chaos and KPZ formula. Comm. Math. Phys. 330 283–330.
  • [11] Duplantier, B., Rhodes, R., Sheffield, S. and Vargas, V. (2014). Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. 42 1769–1808.
  • [12] Fyodorov, Y., Le Doussal, P. and Rosso, A. (2009). Statistical mechanics of logarithmic REM: Duality, freezing and extreme value statistics of $1/f$ noises generated by Gaussian free fields. J. Stat. Mech. P10005.
  • [13] Fyodorov, Y. V. and Bouchaud, J.-P. (2008). Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41 372001, 12.
  • [14] Kahane, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 105–150.
  • [15] Lacoin, H., Rhodes, R. and Vargas, V. (2015). Complex Gaussian multiplicative chaos. Comm. Math. Phys. 337 569–632.
  • [16] Madaule, T. (2015). Convergence in law for the branching random walk seen from its tip. Preprint. Available at arXiv:1107.2543v5.
  • [17] Madaule, T. (2015). Maximum of a log-correlated Gaussian field. Ann. Inst. Henri Poincaré Probab. Stat. 51 1369–1431.
  • [18] Mandelbrot, B. (1974). Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278 289–292.
  • [19] Mörters, P. and Peres, Y. (2010). Brownian Motion. Cambridge Univ. Press, Cambridge.
  • [20] Pitt, L. D. and Tran, L. T. (1979). Local sample path properties of Gaussian fields. Ann. Probab. 7 477–493.
  • [21] Rhodes, R. and Vargas, V. (2014). Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 315–392.
  • [22] Robert, R. and Vargas, V. (2010). Gaussian multiplicative chaos revisited. Ann. Probab. 38 605–631.
  • [23] Sheffield, S. (2007). Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 521–541.
  • [24] Webb, C. (2011). Exact asymptotics of the freezing transition of a logarithmically correlated random energy model. J. Stat. Phys. 145 1595–1619.