The Annals of Applied Probability

Asymptotic domino statistics in the Aztec diamond

Sunil Chhita, Kurt Johansson, and Benjamin Young

Full-text: Open access


We study random domino tilings of the Aztec diamond with different weights for horizontal and vertical dominoes. A domino tiling of an Aztec diamond can also be described by a particle system which is a determinantal process. We give a relation between the correlation kernel for this process and the inverse Kasteleyn matrix of the Aztec diamond. This gives a formula for the inverse Kasteleyn matrix which generalizes a result of Helfgott. As an application, we investigate the asymptotics of the process formed by the southern dominoes close to the frozen boundary. We find that at the northern boundary, the southern domino process converges to a thinned Airy point process. At the southern boundary, the process of holes of the southern domino process converges to a multiple point process that we call the thickened Airy point process. We also study the convergence of the domino process in the unfrozen region to the limiting Gibbs measure.

Article information

Ann. Appl. Probab., Volume 25, Number 3 (2015), 1232-1278.

First available in Project Euclid: 23 March 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G55: Point processes
Secondary: 60C05: Combinatorial probability

Aztec diamond domino tiling dimer covering determinantal point process


Chhita, Sunil; Johansson, Kurt; Young, Benjamin. Asymptotic domino statistics in the Aztec diamond. Ann. Appl. Probab. 25 (2015), no. 3, 1232--1278. doi:10.1214/14-AAP1021.

Export citation


  • [1] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge.
  • [2] Borodin, A. (2002). Duality of orthogonal polynomials on a finite set. J. Stat. Phys. 109 1109–1120.
  • [3] Borodin, A. and Ferrari, P. L. (2014). Anisotropic growth of random surfaces in $2+1$ dimensions. Comm. Math. Phys. 325 603–684.
  • [4] Borodin, A., Gorin, V. and Rains, E. M. (2010). $q$-distributions on boxed plane partitions. Selecta Math. (N.S.) 16 731–789.
  • [5] Borodin, A. and Shlosman, S. (2010). Gibbs ensembles of nonintersecting paths. Comm. Math. Phys. 293 145–170.
  • [6] Boutillier, C. (2007). Pattern densities in non-frozen planar dimer models. Comm. Math. Phys. 271 55–91.
  • [7] Broomhead, N. (2012). Dimer models and Calabi–Yau algebras. Mem. Amer. Math. Soc. 215 viii+86.
  • [8] Cohn, H., Elkies, N. and Propp, J. (1996). Local statistics for random domino tilings of the Aztec diamond. Duke Math. J. 85 117–166.
  • [9] Cohn, H., Kenyon, R. and Propp, J. (2001). A variational principle for domino tilings. J. Amer. Math. Soc. 14 297–346 (electronic).
  • [10] Cohn, H., Larsen, M. and Propp, J. (1998). The shape of a typical boxed plane partition. New York J. Math. 4 137–165 (electronic).
  • [11] Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes: General Theory and Structure, 2nd ed. Probability and Its Applications (New York) 2. Springer, New York.
  • [12] de Tiliere, B. (2007). Conformal invariance of isoradial dimer models & the case of triangular quadri-tilings. Ann. Inst. H. Poincaré Sect. (B) 43 729–750.
  • [13] Dubédat, J. (2011). Dimers and analytic torsion 1. Available at arXiv:1110.2808.
  • [14] Duits, M. (2013). Gaussian free field in an interlacing particle system with two jump rates. Comm. Pure Appl. Math. 66 600–643.
  • [15] Elkies, N., Kuperberg, G., Larsen, M. and Propp, J. (1992). Alternating-sign matrices and domino tilings. I. J. Algebraic Combin. 1 111–132.
  • [16] Elkies, N., Kuperberg, G., Larsen, M. and Propp, J. (1992). Alternating-sign matrices and domino tilings. II. J. Algebraic Combin. 1 219–234.
  • [17] Fleming, B. J. and Forrester, P. J. (2011). Interlaced particle systems and tilings of the Aztec diamond. J. Stat. Phys. 142 441–459.
  • [18] Gohberg, I., Goldberg, S. and Krupnik, N. (2000). Traces and Determinants of Linear Operators. Operator Theory: Advances and Applications 116. Birkhäuser, Basel.
  • [19] Helfgott, H. (2000). Edge effects on local statistics in lattice dimers: A study of the Aztec diamond (finite case). Preprint. Available at arXiv:math/0007136.
  • [20] Jockusch, W., Propp, J. and Shor, P. (1998). Random domino tilings and the Arctic circle theorem. Preprint. Available at arXiv:math/9801068.
  • [21] Johansson, K. (2002). Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 225–280.
  • [22] Johansson, K. (2005). The arctic circle boundary and the Airy process. Ann. Probab. 33 1–30.
  • [23] Johansson, K. (2006). Random matrices and determinantal processes. In Mathematical Statistical Physics 1–55. Elsevier, Amsterdam.
  • [24] Johansson, K. and Nordenstam, E. (2006). Eigenvalues of GUE minors. Electron. J. Probab. 11 1342–1371.
  • [25] Kasteleyn, P. W. (1961). The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27 1209–1225.
  • [26] Kasteleyn, P. W. (1963). Dimer statistics and phase transitions. J. Math. Phys. 4 287–293.
  • [27] Kenyon, R. (1997). Local statistics of lattice dimers. Ann. Inst. Henri Poincaré Probab. Stat. 33 591–618.
  • [28] Kenyon, R. (2000). Conformal invariance of domino tiling. Ann. Probab. 28 759–795.
  • [29] Kenyon, R. (2001). Dominos and the Gaussian free field. Ann. Probab. 29 1128–1137.
  • [30] Kenyon, R. (2008). Height fluctuations in the honeycomb dimer model. Comm. Math. Phys. 281 675–709.
  • [31] Kenyon, R. (2009). Lectures on dimers. In Statistical Mechanics. IAS/Park City Math. Ser. 16 191–230. Amer. Math. Soc., Providence, RI.
  • [32] Kenyon, R. and Okounkov, A. (2007). Limit shapes and the complex Burgers equation. Acta Math. 199 263–302.
  • [33] Kenyon, R., Okounkov, A. and Sheffield, S. (2006). Dimers and amoebae. Ann. of Math. (2) 163 1019–1056.
  • [34] Levitov, L. S. (1989). The rvb model as the problem of the surface of a quantum crystal. JETP Lett. 50 469–472.
  • [35] Levitov, L. S. (1990). Equivalence of the dimer resonating-valence-bond problem to the quantum roughening problem. Phys. Rev. Lett. 64 92–94.
  • [36] Luby, M., Randall, D. and Sinclair, A. (2001). Markov chain algorithms for planar lattice structures. SIAM J. Comput. 31 167–192.
  • [37] Okounkov, A. and Reshetikhin, N. (2003). Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Amer. Math. Soc. 16 581–603 (electronic).
  • [38] Petrov, L. (2012). Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes. Available at arXiv:1202.3901.
  • [39] Petrov, L. (2012). Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field. Available at arXiv:1206.5123.
  • [40] Romik, D. (2012). Arctic circles, domino tilings and square Young tableaux. Ann. Probab. 40 611–647.
  • [41] Soshnikov, A. (2000). Determinantal random point fields. Uspekhi Mat. Nauk 55 107–160.
  • [42] Temperley, H. N. V. and Fisher, M. E. (1961). Dimer problem in statistical mechanics—an exact result. Philos. Mag. (8) 6 1061–1063.
  • [43] Thurston, W. P. (1990). Conway’s tiling groups. Amer. Math. Monthly 97 757–773.