The Annals of Applied Probability

Evolutionary games on the lattice: Payoffs affecting birth and death rates

N. Lanchier

Full-text: Open access


This article investigates an evolutionary game based on the framework of interacting particle systems. Each point of the square lattice is occupied by a player who is characterized by one of two possible strategies and is attributed a payoff based on her strategy, the strategy of her neighbors and a payoff matrix. Following the traditional approach of evolutionary game theory, this payoff is interpreted as a fitness: the dynamics of the system is derived by thinking of positive payoffs as birth rates and the absolute value of negative payoffs as death rates. The nonspatial mean-field approximation obtained under the assumption that the population is well mixing is the popular replicator equation. The main objective is to understand the consequences of the inclusion of local interactions by investigating and comparing the phase diagrams of the spatial and nonspatial models in the four dimensional space of the payoff matrices. Our results indicate that the inclusion of local interactions induces a reduction of the coexistence region of the replicator equation and the presence of a dominant strategy that wins even when starting at arbitrarily low density in the region where the replicator equation displays bistability. We also discuss the implications of these results in the parameter regions that correspond to the most popular games: the prisoner’s dilemma, the stag hunt game, the hawk-dove game and the battle of the sexes.

Article information

Ann. Appl. Probab., Volume 25, Number 3 (2015), 1108-1154.

First available in Project Euclid: 23 March 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Interacting particle system evolutionary games


Lanchier, N. Evolutionary games on the lattice: Payoffs affecting birth and death rates. Ann. Appl. Probab. 25 (2015), no. 3, 1108--1154. doi:10.1214/14-AAP1018.

Export citation


  • [1] Bramson, M. and Griffeath, D. (1980). On the Williams–Bjerknes tumour growth model. II. Math. Proc. Cambridge Philos. Soc. 88 339–357.
  • [2] Bramson, M. and Griffeath, D. (1981). On the Williams–Bjerknes tumour growth model. I. Ann. Probab. 9 173–185.
  • [3] Brown, D. B. and Hansell, R. I. C. (1987). Convergence to an evolutionary stable strategy in the two-policy game. Am. Naturalist 130 929–940.
  • [4] Chen, Y.-T. (2013). Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann. Appl. Probab. 23 637–664.
  • [5] Clifford, P. and Sudbury, A. (1973). A model for spatial conflict. Biometrika 60 581–588.
  • [6] Cox, J. T., Durrett, R. and Perkins, E. A. (2013). Voter model perturbations and reaction diffusion equations. Astérisque 349 vi+113.
  • [7] Durrett, R. (2013). Spatial evolutionary games with small selection coefficients I. General theory and two strategy examples. Preprint.
  • [8] Durrett, R. (1992). Multicolor particle systems with large threshold and range. J. Theoret. Probab. 5 127–152.
  • [9] Durrett, R. (1995). Ten lectures on particle systems. In Lectures on Probability Theory (Saint-Flour, 1993). Lecture Notes in Math. 1608 97–201. Springer, Berlin.
  • [10] Durrett, R. (2009). Special invited paper: Coexistence in stochastic spatial models. Ann. Appl. Probab. 19 477–496.
  • [11] Durrett, R. and Levin, S. A. (1994). The importance of being discrete (and spatial). Theoret. Pop. Biol. 46 363–394.
  • [12] Evilsizor, S. and Lanchier, N. (2014). Evolutionary games on the lattice: Best-response dynamics. Available as arXiv:1310.5192.
  • [13] Fu, F., Nowak, M. A. and Hauert, C. (2010). Invasion and expansion of cooperators in lattice populations: Prisoner’s dilemma vs. snowdrift games. J. Theoret. Biol. 266 358–366.
  • [14] Harris, T. E. (1972). Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math. 9 66–89.
  • [15] Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge.
  • [16] Holley, R. A. and Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 643–663.
  • [17] Lanchier, N. (2013). Stochastic spatial model of producer-consumer systems on the lattice. Adv. in Appl. Probab. 45 1157–1181.
  • [18] Lanchier, N. and Neuhauser, C. (2009). Spatially explicit non-Mendelian diploid model. Ann. Appl. Probab. 19 1880–1920.
  • [19] Langer, P., Nowak, M. A. and Hauert, C. (2008). Spatial invasion of cooperation. J. Theoret. Biol. 250 634–641.
  • [20] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York.
  • [21] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften 324. Springer, Berlin.
  • [22] Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature 246 15–18.
  • [23] Nash, J. F. Jr. (1950). Equilibrium points in $n$-person games. Proc. Natl. Acad. Sci. USA 36 48–49.
  • [24] Neuhauser, C. and Pacala, S. W. (1999). An explicitly spatial version of the Lotka–Volterra model with interspecific competition. Ann. Appl. Probab. 9 1226–1259.
  • [25] Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life. The Belknap Press of Harvard Univ. Press, Cambridge, MA.
  • [26] Nowak, M. A., Bonhoeffer, S. and May, R. M. (1994). More spatial games. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 33–56.
  • [27] Nowak, M. A., Bonhoeffer, S. and May, R. M. (1994). Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA 91 4877–4881.
  • [28] Nowak, M. A. and May, R. M. (1992). Evolutionary games and spatial chaos. Nature 359 826–829.
  • [29] Nowak, M. A. and May, R. M. (1993). The spatial dilemmas of evolution. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 3 35–78.
  • [30] Richardson, D. (1973). Random growth in a tessellation. Math. Proc. Cambridge Philos. Soc. 74 515–528.
  • [31] von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton Univ. Press, Princeton, NJ.