The Annals of Applied Probability

Bootstrap percolation on the random graph $G_{n,p}$

Svante Janson, Tomasz Łuczak, Tatyana Turova, and Thomas Vallier

Full-text: Open access


Bootstrap percolation on the random graph $G_{n,p}$ is a process of spread of “activation” on a given realization of the graph with a given number of initially active nodes. At each step those vertices which have not been active but have at least $r\geq2$ active neighbors become active as well.

We study the size $A^{\ast}$ of the final active set. The parameters of the model are, besides $r$ (fixed) and $n$ (tending to $\infty$), the size $a=a(n)$ of the initially active set and the probability $p=p(n)$ of the edges in the graph. We show that the model exhibits a sharp phase transition: depending on the parameters of the model, the final size of activation with a high probability is either $n-o(n)$ or it is $o(n)$. We provide a complete description of the phase diagram on the space of the parameters of the model. In particular, we find the phase transition and compute the asymptotics (in probability) for $A^{\ast}$; we also prove a central limit theorem for $A^{\ast}$ in some ranges. Furthermore, we provide the asymptotics for the number of steps until the process stops.

Article information

Ann. Appl. Probab., Volume 22, Number 5 (2012), 1989-2047.

First available in Project Euclid: 12 October 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05C80: Random graphs [See also 60B20] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60C05: Combinatorial probability

Bootstrap percolation random graph sharp threshold


Janson, Svante; Łuczak, Tomasz; Turova, Tatyana; Vallier, Thomas. Bootstrap percolation on the random graph $G_{n,p}$. Ann. Appl. Probab. 22 (2012), no. 5, 1989--2047. doi:10.1214/11-AAP822.

Export citation


  • [1] Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801–3813.
  • [2] Amini, H. (2010). Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Combin. 17 Research Paper 25, 20.
  • [3] Ball, F. and Britton, T. (2005). An epidemic model with exposure-dependent severities. J. Appl. Probab. 42 932–949.
  • [4] Ball, F. and Britton, T. (2009). An epidemic model with infector and exposure dependent severity. Math. Biosci. 218 105–120.
  • [5] Balogh, J. and Bollobás, B. (2006). Bootstrap percolation on the hypercube. Probab. Theory Related Fields 134 624–648.
  • [6] Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2012). The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 364 2667–2701.
  • [7] Balogh, J., Bollobás, B. and Morris, R. (2009). Majority bootstrap percolation on the hypercube. Combin. Probab. Comput. 18 17–51.
  • [8] Balogh, J., Bollobás, B. and Morris, R. (2009). Bootstrap percolation in three dimensions. Ann. Probab. 37 1329–1380.
  • [9] Balogh, J., Bollobás, B. and Morris, R. (2010). Bootstrap percolation in high dimensions. Combin. Probab. Comput. 19 643–692.
  • [10] Balogh, J., Bollobás, B. and Morris, R. (2011). Graph bootstrap percolation. Preprint. Available at arXiv:1107.1381.
  • [11] Balogh, J., Bollobás, B., Morris, R. and Riordan, O. (2011). Linear algebra and bootstrap percolation. Preprint. Available at arXiv:1107.1410.
  • [12] Balogh, J., Peres, Y. and Pete, G. (2006). Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15 715–730.
  • [13] Balogh, J. and Pete, G. (1998). Random disease on the square grid. In Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznan, 1997) 13 409–422.
  • [14] Balogh, J. and Pittel, B. G. (2007). Bootstrap percolation on the random regular graph. Random Structures Algorithms 30 257–286.
  • [15] Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford Studies in Probability 2. Oxford Univ. Press, Oxford.
  • [16] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • [17] Bollobás, B. (1968). Weakly $k$-saturated graphs. In Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967) 25–31. Teubner, Leipzig.
  • [18] Bollobás, B. (2006). The Art of Mathematics: Coffee Time in Memphis. Cambridge Univ. Press, New York.
  • [19] Carroll, L. (1876). The Hunting of the Snark. Macmillan, London.
  • [20] Cerf, R. and Cirillo, E. N. M. (1999). Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab. 27 1837–1850.
  • [21] Cerf, R. and Manzo, F. (2002). The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 69–82.
  • [22] Cerf, R. and Manzo, F. (2010). A $d$-dimensional nucleation and growth model. Preprint. Available at arXiv:1001.3990.
  • [23] Cerf, R. and Manzo, F. (2011). Nucleation and growth for the Ising model in $d$ dimensions at very low temperatures. Preprint. Available at arXiv:1102.1741.
  • [24] Chalupa, J., Leath, P. L. and Reich, G. R. (1979). Bootstrap percolation on a Bethe lattice. J. Phys. C 12 L31–L35.
  • [25] Duminil-Copin, H. and Van Enter, A. C. D. (2010). Sharp metastability threshold for an anisotropic bootstrap percolation model. Preprint. Available at arXiv:1010.4691.
  • [26] Fontes, L. R., Schonmann, R. H. and Sidoravicius, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228 495–518.
  • [27] Gravner, J., Holroyd, A. E. and Morris, A. (2012). A sharper threshold for bootstrap percolation in two dimensions. Probab. Theory Related Fields. To appear. Available at arXiv:1002.3881v2.
  • [28] Gut, A. (2005). Probability: A Graduate Course. Springer, New York.
  • [29] Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195–224.
  • [30] Holroyd, A. E., Liggett, T. M. and Romik, D. (2004). Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc. 356 3349–3368 (electronic).
  • [31] Janson, S. (1994). Orthogonal decompositions and functional limit theorems for random graph statistics. Mem. Amer. Math. Soc. 111 vi+78.
  • [32] Janson, S. (2009). On percolation in random graphs with given vertex degrees. Electron. J. Probab. 14 87–118.
  • [33] Janson, S. (2009). Probability asymptotics: Notes on notation. Institute Mittag-Leffler Report 12.
  • [34] Janson, S., Łuczak, T. and Rucinski, A. (2000). Random Graphs. Wiley, New York.
  • [35] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
  • [36] Kozma, R., Puljic, M., Balister, P., Bollobás, B. and Freeman, W. J. (2005). Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybernet. 92 367–379.
  • [37] Martin-Löf, A. (1986). Symmetric sampling procedures, general epidemic processes and their threshold limit theorems. J. Appl. Probab. 23 265–282.
  • [38] Martin-Löf, A. (1998). The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier. J. Appl. Probab. 35 671–682.
  • [39] Morris, R. (2009). Minimal percolating sets in bootstrap percolation. Electron. J. Combin. 16 Research Paper 2, 20.
  • [40] Morris, R. (2011). Zero-temperature Glauber dynamics on $\mathbb{Z}^{d}$. Probab. Theory Related Fields 149 417–434.
  • [41] Scalia-Tomba, G.-P. (1985). Asymptotic final-size distribution for some chain-binomial processes. Adv. in Appl. Probab. 17 477–495.
  • [42] Schonmann, R. H. (1992). On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20 174–193.
  • [43] Sellke, T. (1983). On the asymptotic distribution of the size of a stochastic epidemic. J. Appl. Probab. 20 390–394.
  • [44] Tlusty, T. and Eckmann, J. P. (2009). Remarks on bootstrap percolation in metric networks. J. Phys. A 42 205004, 11.
  • [45] Turova, T. (2012). The emergence of connectivity in neuronal networks: From bootstrap percolation to auto-associative memory. Brain Research 1434 277–284.
  • [46] Turova, T. S. and Villa, A. E. P. (2007). On a phase diagram for random neural networks with embedded spike timing dependent plasticity. BioSystems 89 280–286.
  • [47] Vallier, T. (2007). Random graph models and their applications. Ph.D. thesis, Lund Univ.
  • [48] von Bahr, B. and Martin-Löf, A. (1980). Threshold limit theorems for some epidemic processes. Adv. in Appl. Probab. 12 319–349.