The Annals of Applied Probability

Coupled paraxial wave equations in random media in the white-noise regime

Josselin Garnier and Knut Sølna

Full-text: Open access

Abstract

In this paper the reflection and transmission of waves by a three-dimensional random medium are studied in a white-noise and paraxial regime. The limit system derives from the acoustic wave equations and is described by a coupled system of random Schrödinger equations driven by a Brownian field whose covariance is determined by the two-point statistics of the fluctuations of the random medium. For the reflected and transmitted fields the associated Wigner distributions and the autocorrelation functions are determined by a closed system of transport equations. The Wigner distribution is then used to describe the enhanced backscattering phenomenon for the reflected field.

Article information

Source
Ann. Appl. Probab., Volume 19, Number 1 (2009), 318-346.

Dates
First available in Project Euclid: 20 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1235140341

Digital Object Identifier
doi:10.1214/08-AAP543

Mathematical Reviews number (MathSciNet)
MR2498680

Zentralblatt MATH identifier
1175.60066

Subjects
Primary: 60H15: Stochastic partial differential equations [See also 35R60] 35R60: Partial differential equations with randomness, stochastic partial differential equations [See also 60H15] 74J20: Wave scattering

Keywords
Waves in random media parabolic approximation diffusion-approximation

Citation

Garnier, Josselin; Sølna, Knut. Coupled paraxial wave equations in random media in the white-noise regime. Ann. Appl. Probab. 19 (2009), no. 1, 318--346. doi:10.1214/08-AAP543. https://projecteuclid.org/euclid.aoap/1235140341


Export citation

References

  • [1] Bailly, F., Clouet, J. F. and Fouque, J. P. (1996). Parabolic and Gaussian white noise approximation for wave propagation in random media. SIAM J. Appl. Math. 56 1445–1470.
  • [2] Bamberger, A., Engquist, B., Halpern, L. and Joly, P. (1988). Parabolic wave equation approximations in heterogenous media. SIAM J. Appl. Math. 48 99–128.
  • [3] Barabanenkov, Y. N. (1973). Wave corrections for the transfer equation for backward scattering. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 16 88–96.
  • [4] Bernardi, C. and Pelissier, M.-C. (1994). Spectral approximation of a Schrödinger type equation. Math. Models Methods Appl. Sci. 4 49–88.
  • [5] Blomgren, P., Papanicolaou, G. and Zhao, H. (2002). Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111 230–248.
  • [6] Claerbout, J. F. (1985). Imaging the Earth’s Interior. Blackwell Science, Palo Alto, CA.
  • [7] Clouet, J.-F. and Fouque, J.-P. (1994). Spreading of a pulse travelling in random media. Ann. Appl. Probab. 4 1083–1097.
  • [8] Dawson, D. A. and Papanicolaou, G. C. (1984). A random wave process. Appl. Math. Optim. 12 97–114.
  • [9] Fannjiang, A. C. (2005). White-noise and geometrical optics limits of Wigner–Moyal equation for beam waves in turbulent media. II. Two-frequency formulation. J. Stat. Phys. 120 543–586.
  • [10] Fannjiang, A. C. (2006). Self-averaging radiative transfer for parabolic waves. C. R. Math. Acad. Sci. Paris 342 109–114.
  • [11] Fannjiang, A. and Sølna, K. (2005). Superresolution and duality for time-reversal of waves in random media. Phys. Lett. A 352 22–29.
  • [12] Fannjiang, A. C. and Solna, K. (2005). Propagation and time reversal of wave beams in atmospheric turbulence. Multiscale Model. Simul. 3 522–558 (electronic).
  • [13] Feizulin, Z. I. and Kravtsov, Yu. A. (1967). Broadening of a laser beam in a turbulent medium. Radio Quantum Electron. 10 33–35.
  • [14] Fouque, J.-P., Garnier, J., Papanicolaou, G. and Sølna, K. (2007). Wave Propagation and Time Reversal in Randomly Layered Media. Stochastic Modelling and Applied Probability 56. Springer, New York.
  • [15] Fouque, J. P., Papanicolaou, G. and Samuelides, Y. (1998). Forward and Markov approximation: The strong-intensity-fluctuations regime revisited. Waves Random Media 8 303–314.
  • [16] Garnier, J., Gouédard, C. and Videau, L. (2000). Propagation of a partially coherent beam under the interaction of small and large scales. Opt. Commun. 176 281–297.
  • [17] Garnier, J. and Sølna, K. (2008). Effective transport equations and enhanced backscattering in random waveguides. SIAM J. Appl. Math. 68 1574–1599.
  • [18] Garnier, J. and Sølna, K. (2008). Random backscattering in the parabolic scaling. J. Stat. Phys. 131 445–486.
  • [19] Ishimaru, A. (1997). Wave Propagation and Scattering in Random Media. IEEE Press, New York. Reprint of the 1978 original, with a foreword by Gary S. Brown, An IEEE/OUP Classic Reissue.
  • [20] Miyahara, Y. (1982). Stochastic Evolution Equations and White Noise Analysis. Carleton Mathematical Lecture Notes 42 1–80. Carleton Univ., Ottawa, Canada.
  • [21] Papanicolaou, G., Ryzhik, L. and Sølna, K. (2004). Statistical stability in time reversal. SIAM J. Appl. Math. 64 1133–1155 (electronic).
  • [22] Ryzhik, L., Papanicolaou, G. and Keller, J. B. (1996). Transport equations for elastic and other waves in random media. Wave Motion 24 327–370.
  • [23] Strohbehn, J. W., ed. (1978). Laser Beam Propagation in the Atmosphere. Springer, Berlin.
  • [24] Tappert, F. D. (1977). The parabolic approximation method. In Wave Propagation and Underwater Acoustics. Lecture Notes in Phys. 70 224–287. Springer, Berlin.
  • [25] Tatarskiĭ, V. I., Ishimaru, A. and Zavorotny, V. U., eds. (1993). Wave Propagation in Random Media (Scintillation). Copublished by SPIE–The International Society for Optical Engineering, Bellingham, WA. Papers from the International Meeting held at the University of Washington, Seattle, Washington, August 3–7, 1992.
  • [26] Thrane, L., Yura, H. T. and Andersen, P. E. (2000). Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle. J. Opt. Soc. Amer. A 17 484–490.
  • [27] van Rossum, M. C. W. and Nieuwenhuizen, Th. M. (1999). Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion. Rev. Modern Phys. 71 313–371.