The Annals of Applied Probability

Lp-variations for multifractal fractional random walks

Carenne Ludeña

Full-text: Open access

Abstract

A multifractal random walk (MRW) is defined by a Brownian motion subordinated by a class of continuous multifractal random measures M[0, t], 0≤t≤1. In this paper we obtain an extension of this process, referred to as multifractal fractional random walk (MFRW), by considering the limit in distribution of a sequence of conditionally Gaussian processes. These conditional processes are defined as integrals with respect to fractional Brownian motion and convergence is seen to hold under certain conditions relating the self-similarity (Hurst) exponent of the fBm to the parameters defining the multifractal random measure M. As a result, a larger class of models is obtained, whose fine scale (scaling) structure is then analyzed in terms of the empirical structure functions. Implications for the analysis and inference of multifractal exponents from data, namely, confidence intervals, are also provided.

Article information

Source
Ann. Appl. Probab., Volume 18, Number 3 (2008), 1138-1163.

Dates
First available in Project Euclid: 26 May 2008

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1211819796

Digital Object Identifier
doi:10.1214/07-AAP483

Mathematical Reviews number (MathSciNet)
MR2418240

Zentralblatt MATH identifier
1154.60029

Subjects
Primary: 60F05: Central limit and other weak theorems 60G57: Random measures 60K40: Other physical applications of random processes 62F10: Point estimation
Secondary: 60G15: Gaussian processes 60G18: Self-similar processes 60E07: Infinitely divisible distributions; stable distributions

Keywords
Fractional Brownian motion multifractal random measures multifractal random walks L^p-variations linearization effect scaling phenomena

Citation

Ludeña, Carenne. L p -variations for multifractal fractional random walks. Ann. Appl. Probab. 18 (2008), no. 3, 1138--1163. doi:10.1214/07-AAP483. https://projecteuclid.org/euclid.aoap/1211819796


Export citation

References

  • [1] Abry, P., Flandrin, P., Taqqu, M. S. and Veitch, D. (2000). Wavelets for the analysis, estimation and synthesis of scaling data. In Self Similar Network Traffic and Performance Evaluation (K. Park and W. Willinger, eds.) 39–88. Wiley, New York.
  • [2] Abry, P., Jaffard, S. and Lashermes, B. (2005). Revisiting scaling, multifractal and multiplicative cascades with the wavelet leader lens. SPIE Proceedings Series. International Society for Optical Engineering Proceedings Series, Congres Wavelet Applications in Industrial Processing II (Philadelphia, PA, 27–28 October 2004). Wavelet Applications in Industrial Processing 5607 103–117. Society of Photo Optical, SPIE, Bellingham, WA.
  • [3] Arcones, M. (1994). Limit theorems for nonlinear functionals of stationary Gaussian sequence of vectors. Ann. Probab. 22 2242–2274.
  • [4] Abry, P., Baraniuk, R., Flandrin, P., Riedi, R. and Veitch, D. (2002). Multiscale nature of network traffic. IEEE Signal Processing Magazine 19 28–46.
  • [5] Bacry, E., Arneodo, A., Frisch, U., Gagne, Y. and Hopfinger, E. (1991). Wavelet analysis of fully developed turbulence data and measurement of scaling exponents. In Turbulence and Coherent Structures (Grenoble, 1989) 203–215. Kluwer, Dordrecht.
  • [6] Bacry, E., Delour, J. and Muzy, J. F. (2001). Multifractal random walk. Phys. Rev. E 64 1–4.
  • [7] Bacry, E. and Muzy, J. F. (2003). Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 449–475.
  • [8] Barral, J. and Mandelbrot, B. (2002). Multifractal products of cylindrical pulses. Probab. Theory Related Fields 124 409–430.
  • [9] Breuer, P. and Major, P. (1983). Central limit theorems for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13 425–441.
  • [10] Decreussefond, L. (2003). Stochastic integration with respect to fractional Brownian motion. In Theory and Applications of Long Range Dependence (P. Doukhan, G. Oppenheim and M. Taqqu, eds.) 203–227. Birkhäuser, Boston.
  • [11] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. II, 2nd ed. Wiley, New York.
  • [12] Fox, R. and Taqqu, M. (1987). Central limit theorems for quadratic forms in random variables having long range dependence. Probab. Theory Related Fields 74 213–240.
  • [13] Gonçalves, P. and Riedi, R. (1999). Wavelet analysis of fractional Brownian motion in multifractal time. In Proceedings of the 17th Colloquium GRETSI, Vannes, France. Colloques sur le traitement du signal et des images, Gretsi, France.
  • [14] Lashermes, B., Jaffard, S. and Abry, P. (2005). Wavelet leader based multifractal analysis. In Acoustics, Speech, and Signal Processing, 2005. Proceedings (ICASSP’05). IEEE International Conference 4 18–23, iv/161–iv/164. IEEE, New York.
  • [15] Kahane, J. P. and Peyère, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22 131–145.
  • [16] Lashermes, B., Abry, P. and Chainais, P. (2004). New insights into the estimation of scaling exponents. Int. J. Wavelets Multiresolut. Inf. Process. 2 1–27.
  • [17] Mandelbrot, B. (1974). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 331–358.
  • [18] Ossiander, M. and Waymire, E. (2000). Statistical estimation for multiplicative cascades. Ann. Statist. 28 1533–1560.
  • [19] Parisi, G. and Frisch, U. (1985). On the singularity of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics. Proceedings of the International School of Physics E. Fermi (M. Ghil, R. Benzi and G. Parisi, eds.) 84–87. Italian Physical Society Press.
  • [20] Riedi, R. H. (2003). Multifractal processes. In Theory and Applications of Long Range Dependence (Doukhan, Oppenheim and Taqqu, eds.) 625–716. Birkhäuser, Boston.
  • [21] Teich, M. C., Lowen, S. B., Jost, B. M., Vibe-Rheymer, K. and Heneghan, C. (2001). Heart-rate variability: Measures and models. In Nonlinear Biomedical Signal Processing II. Dynamic Analysis and Modeling (M. Akay, ed.) 159–213. IEEE, New York.
  • [22] Telesca, L. Lapenna, V. and Macchiato, M. (2005). Multifractal fluctuations in earthquake related geoelectrical signals. New J. Phys. 7. Edited by the Institute of Physics (IOP).
  • [23] Turiel, A., Pérez-Vicente, C. and Grazzini, J. (2006). Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study. J. Comput. Phys. 216 362–390.