The Annals of Applied Probability

Asymptotic Fringe Distributions for General Families of Random Trees

David Aldous

Full-text: Open access

Abstract

Consider some model of random finite trees of increasing size. It often happens that the subtree at a uniform random vertex converges in distribution to a limit random tree. We introduce some structure theory for such asymptotic fringe distributions and illustrate with many examples.

Article information

Source
Ann. Appl. Probab., Volume 1, Number 2 (1991), 228-266.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1177005936

Digital Object Identifier
doi:10.1214/aoap/1177005936

Mathematical Reviews number (MathSciNet)
MR1102319

Zentralblatt MATH identifier
0733.60016

JSTOR
links.jstor.org

Subjects
Primary: 60C05: Combinatorial probability
Secondary: 05C80: Random graphs [See also 60B20]

Keywords
Random tree random graph subtree branching process recursive tree binary search tree random trie stable type

Citation

Aldous, David. Asymptotic Fringe Distributions for General Families of Random Trees. Ann. Appl. Probab. 1 (1991), no. 2, 228--266. doi:10.1214/aoap/1177005936. https://projecteuclid.org/euclid.aoap/1177005936


Export citation