The Annals of Applied Probability

An Inequality for Greedy Lattice Animals

Sungchul Lee

Full-text: Open access

Abstract

Let $\{X_\nu: \nu \in \mathbb{Z}^d\}$ be i.i.d. positive random variables with $E\{X^d_0(\log^+ X_0)^{d+\varepsilon}\} < \infty$ for some $\varepsilon > 0$ and $d \geq 2$. Define $M_n$ and $N_n$ by \begin{align*} M_n &= \max\big\{\sum_{\nu \in \pi} X_\nu: \pi \text{a self-avoiding path of length}\quad n \\ \text{starting at the origin}\big\},\\ N_n &= \max\big\{\sum_{\nu\in \xi} X_\nu:\xi \quad\text{a lattice animal of size} \quad n \text{containing the origin}\big\}.\end{align*} Then it has been shown that there exist $M < \infty$ and $N < \infty$ such that $\frac{M_n}{n} \rightarrow M \quad\text{and}\quad \frac{N_n}{n} \rightarrow N \text{a.s. and in}\quad L^1$. In this paper we show that $M = N$ if and only if $X_0$ has bounded support and $P\{x_0 = R\} \geq p_c$, where $R$ is the right end point of support of $X_0$ and $p_c$ is the critical probability for site percolation on $\mathbb{Z}^d$.

Article information

Source
Ann. Appl. Probab., Volume 3, Number 4 (1993), 1170-1188.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1177005278

Digital Object Identifier
doi:10.1214/aoap/1177005278

Mathematical Reviews number (MathSciNet)
MR1241040

Zentralblatt MATH identifier
0784.60049

JSTOR
links.jstor.org

Subjects
Primary: 60G50: Sums of independent random variables; random walks
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Lattice animals self-avoiding paths

Citation

Lee, Sungchul. An Inequality for Greedy Lattice Animals. Ann. Appl. Probab. 3 (1993), no. 4, 1170--1188. doi:10.1214/aoap/1177005278. https://projecteuclid.org/euclid.aoap/1177005278


Export citation