The Annals of Applied Probability

Diffusion Approximation for an Age-Structured Population

A. Bose and I. Kaj

Full-text: Open access

Abstract

We prove a diffusion limit theorem in the sense of weak convergence of measure-valued processes for a population age model first studied by Kendall. We show that in the diffusion limit scaling, the population structured in age groups behaves in the same way as the total population size, but with an exponential weight. A particular feature of the limiting process is that in general it is discontinuous at time zero.

Article information

Source
Ann. Appl. Probab., Volume 5, Number 1 (1995), 140-157.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1177004833

Digital Object Identifier
doi:10.1214/aoap/1177004833

Mathematical Reviews number (MathSciNet)
MR1325046

Zentralblatt MATH identifier
0829.60076

JSTOR
links.jstor.org

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60J25: Continuous-time Markov processes on general state spaces

Keywords
Measure-valued processes age distribution diffusion limit

Citation

Bose, A.; Kaj, I. Diffusion Approximation for an Age-Structured Population. Ann. Appl. Probab. 5 (1995), no. 1, 140--157. doi:10.1214/aoap/1177004833. https://projecteuclid.org/euclid.aoap/1177004833


Export citation