The Annals of Applied Probability

Minimal Positions in a Branching Random Walk

Colin McDiarmid

Full-text: Open access

Abstract

We consider a branching random walk on the real line, with mean family size greater than 1. Let $B_n$ denote the minimal position of a member of the $n$th generation. It is known that (under a weak condition) there is a finite constant $\gamma$, defined in terms of the distributions specifying the process, such that as $n \rightarrow \infty$, we have $B_n = \gamma n + o(n)$ a.s. on the event $S$ of ultimate survival. Our results here show that (under appropriate conditions), on $S$ the random variable $B_n$ is strongly concentrated and the $o(n)$ error term may be replaced by $O(\log n)$.

Article information

Source
Ann. Appl. Probab., Volume 5, Number 1 (1995), 128-139.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1177004832

Digital Object Identifier
doi:10.1214/aoap/1177004832

Mathematical Reviews number (MathSciNet)
MR1325045

Zentralblatt MATH identifier
0836.60089

JSTOR
links.jstor.org

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Keywords
Branching random walk minimal position age-dependent branching process first birth time

Citation

McDiarmid, Colin. Minimal Positions in a Branching Random Walk. Ann. Appl. Probab. 5 (1995), no. 1, 128--139. doi:10.1214/aoap/1177004832. https://projecteuclid.org/euclid.aoap/1177004832


Export citation